In this work we present a wearable input device which enables the user to input text into a computer. The text is written into the air via character gestures, like using an imaginary blackboard. To allow hands-free operation, we designed and implemented a data glove, equipped with three gyroscopes and three accelerometers to measure hand motion. Data is sent wirelessly to the computer via Bluetooth. We use HMMs for character recognition and concatenated character models for word recognition. As features we apply normalized raw sensor signals. Experiments on single character and word recognition are performed to evaluate the end-to-end system. On a character database with 10 writers, we achieve an average writer-dependent character recognition rate of 94.8% and a writer-independent character recognition rate of 81.9%. Based on a small vocabulary of 652 words, we achieve a single-writer word recognition rate of 97.5%, a performance we deem is advisable for many applications. The final system is integrated into an online word recognition demonstration system to showcase its applicability.
Abstract-In this paper, a multi-level approach to intention, activity, and motion recognition for a humanoid robot is proposed. Our system processes images from a monocular camera and combines this information with domain knowledge. The recognition works on-line and in real-time, it is independent of the test person, but limited to predefined view-points. Main contributions of this paper are the extensible, multi-level modeling of the robot's vision system, the efficient activity and motion recognition, and the asynchronous information fusion based on generic processing of mid-level recognition results. The complementarity of the activity and motion recognition renders the approach robust against misclassifications. Experimental results on a real-world data set of complex kitchen tasks, e.g., Prepare Cereals or Lay Table, prove the performance and robustness of the multi-level recognition approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.