The previously constructed MSP (manganese stabilizing protein-psbO gene product)-free mutant of Synechococcus PCC7942 (Bockholt R, Masepohl B and Pistorius E K (1991) FEBS Lett 294: 59-63) and a newly constructed MSP-free mutant of Synechocystis PCC6803 were investigated with respect to the inactivation of the water-oxidizing enzyme during dark incubation. O2 evolution in the MSP-free mutant cells, when measured with a sequence of short saturating light flashes, was practically zero after an extended dark adaptation, while O2 evolution in the corresponding wild type cells remained nearly constant. It could be shown that this inactivation could be reversed by photoactivation. With isolated thylakoid membranes from the MSP-free mutant of PCC7942, it could be demonstrated that photoactivation required illumination in the presence of Mn(2+) and Ca(2+), while Cl(-) addition was not required under our experimental conditions. Moreover, an extended analysis of the kinetic properties of the water-oxidizing enzyme (kinetics of the S3→(S4)→S0 transition, S-state distribution, deactivation kinetics) in wild type and mutant cells of Synechococcus PCC7942 and Synechocystis PCC6803 was performed, and the events possibly leading to the reversible inactivation of the water-oxidizing enzyme in the mutant cells are discussed. We could also show that the water-oxidizing enzyme in the MSP-free mutant cells is more sensitive to inhibition by added NH4Cl-suggesting that NH3 might be a physiological inhibitor of the water oxidizing enzyme in the absence of MSP.
The gene encoding a putative nitrilase was identified in the genome sequence of the photosynthetic cyanobacterium Synechocystis sp. strain PCC6803. The gene was amplified by PCR and cloned into an expression vector. The encoded protein was heterologously expressed in the native form and as a His-tagged protein in Escherichia coli, and the recombinant strains were shown to convert benzonitrile to benzoate. The active enzyme was purified to homogeneity and shown by gel filtration to consist probably of 10 subunits. The purified nitrilase converted various aromatic and aliphatic nitriles. The highest enzyme activity was observed with fumarodinitrile, but also some rather hydrophobic aromatic (e.g., naphthalenecarbonitrile), heterocyclic (e.g., indole-3-acetonitrile), or long-chain aliphatic (di-)nitriles (e.g., octanoic acid dinitrile) were converted with higher specific activities than benzonitrile. From aliphatic dinitriles with less than six carbon atoms only 1 mol of ammonia was released per mol of dinitrile, and thus presumably the corresponding cyanocarboxylic acids formed. The purified enzyme was active in the presence of a wide range of organic solvents and the turnover rates of dodecanoic acid nitrile and naphthalenecarbonitrile were increased in the presence of water-soluble and water-immiscible organic solvents.
An L-amino acid oxidase with high specifity for basic L-amino acids was isolated from the cyanobacterium Synechococcus PCC 7942, and the enzyme was partially characterized. This enzyme was compared to the previously described L-amino acid oxidase from Synechococcus PCC6301 (G. Wälzlein, A. E. Gau, and E. K. Pistorius, Z. Naturforsch. 43c, 5 4 5-553, 1988). In addition, photosystem II complexes were isolated from Synechococcus PCC 7942, and it could be shown that a 36 kDa polypeptide which crossreacts with the antiserum raised against the L-amino acid oxidase (50 kD a) is present in isolated PS II complexes from Synechococcus PCC 7942 as already shown to be the case for Synechococcus PC C 6301 (A. E. Gau, G. W älzlein, S. Gärtner, M. Kuhlmann, S. Specht, and E. K. Pistorius, Z. Naturforsch. 44c, 9 7 1 -9 7 5 , 1989). These results clearly show that in isolated photosystem II complexes from Synechococcus PCC 6301 as well as PCC 7942 a fourth polypeptide (besides D 1, D 2 and the manganese stabilizing protein) is present in the 30 kDa region and support our hypothesis suggesting that the water oxidizing enzyme is a separate protein (distinct from D 1 and D 2)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.