Suppose we want to move a passive object along a given path, among obstacles in the plane, by pushing it with an active robot. We present two algorithms to compute a push plan for the case that the obstacles are non-intersecting line segments, and the object and robot are disks. The first algorithm assumes that the robot must maintain contact with the object at all times, and produces a shortest path. There are also situations, however, where the robot has no choice but to let go of the object occasionally. Our second algorithm handles such cases, but no longer guarantees that the produced path is the shortest possible.
An important but strongly NP-hard problem in automated cartography is how to best place textual labels for point features on a static map. We examine the complexity of various generalizations of this problem for dynamic and/or interactive maps. Specifically, we show that it is strongly PSPACE-complete to decide whether there is a smooth dynamic labeling (function from time to static labelings) when the points move, when points are added and removed, or when the user pans, rotates, and/or zooms their view of the points. In doing so we develop a framework from which a wide variety of labeling hardness results can be obtained, including (next to the PSPACE-hardness results) both known and new results on the NP-hardness of static labeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.