In the developed countries infections of the feet (tinea pedis, athlete's foot) and nails (onychomycosis) with the anthropophile fungus Trichophyton rubrum are most common. We examined the propagation of dermatophytes before and during domestic laundering. About 10% of the infectious material was transferred from contaminated textiles to sterile textiles during storage in a clothes basket simulation indicating a high infection risk during storage. This was evaluated with two quantification techniques: cultivation with subsequent colony counting and tracing of radioactively labelled propagating units. Both approaches reliably revealed similar results with the latter method reducing experimental time to few minutes compared to 2 weeks with the traditional method. The tracer technique allowed favourably to directly reflect the textile-bound infectious material at the moment of skin contact. To address the infection risk during domestic laundry, bioindicators with T. rubrum or the yeast Candida albicans were introduced into common domestic washing procedures with different temperature courses. While C. albicans did not survive any of the tests, T. rubrum could be recovered after washing at 30°C, indicating the risk potential of dermatophyte infections at home. Up to 16% of the initial fungus load was detected in the rinsing water. Washing at 60°C however, eliminated both pathogens, T. rubrum and C. albicans.
Aim: Gastro‐intestinal infections are widespread in the community and have considerable economic consequences. In this study, we followed chains of infection from a public toilet scenario, looking at infection risks by correlating the transmission of bacteria, fungi and viruses to our current knowledge of infectious doses. Methods and Results: Transmission of Escherichia coli, Bacillus atrophaeus spores, Candida albicans and bacteriophage MS2 from hands to surfaces was examined in a transmission model, that is toilet brush, door handle to water tap. The load of viable pathogens was significantly reduced during transfer from hands to objects. Nevertheless, it was shown that pathogens were successfully transferred to other people in contagious doses by contact with contaminated surfaces. Conclusions: Our results suggest that infection risks are mainly dependent on current infectious doses of pathogens. For enteritic viruses or bacteria, for example Norovirus or EHEC, only a few particles or cells are sufficient for infection in public lavatories, thus bearing a high risk of infection for other persons. However, there seems to be only a low probability of becoming infected with pathogens that have a high infectious dose whilst sharing the same bathroom. Significance and Impact of the Study: The transmission model for micro‐organisms enables a risk assessment of gastro‐intestinal infections on the basis of a practical approach.
Poor vascularization is the key limitation for long-term acceptance of large three-dimensional (3D) tissue engineering constructs in regenerative medicine. 45S5 Bioglass Ò was investigated given its potential for applications in bone engineering. Since native Bioglass Ò shows insufficient angiogenic properties, we used a collagen coating, to seed human adipose tissue-derived stem cells (hASC) confluently onto 3D 45S5 Bioglass Ò -based scaffolds. To investigate vascularization by semiquantitative analyses, these biofunctionalized scaffolds were then subjected to in vitro human umbilical vein endothelial cells formation assays, and were also investigated in the chorioallantoic membrane (CAM) angiogenesis model, an in vivo angiogenesis assay, which uses the CAM of the hen's egg. In their native, nonbiofunctionalized state, neither Bioglass Ò -based nor biologically inert fibrous polypropylene control scaffolds showed angiogenic properties. However, significant vascularization was induced by hASC-seeded scaffolds (Bioglass Ò and polypropylene) in the CAM angiogenesis assay. Biofunctionalized scaffolds also showed enhanced tube lengths, compared to unmodified scaffolds or constructs seeded with fibroblasts. In case of biologically inert hernia meshes, the quantification of vascular endothelial growth factor secretion as the key angiogenic stimulus strongly correlated to the tube lengths and vessel numbers in all models. This correlation proved the CAM angiogenesis assay to be a suitable semiquantitative tool to characterize angiogenic effects of larger 3D implants. In addition, our results suggest that combinations of suitable scaffold materials, such as 45S5 Bioglass Ò , with hASC could be a promising approach for future tissue engineering applications.
The test procedure described here may be a tool to evaluate the fabric feel with the exclusion of subjective biases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.