TTh he e p pl la an nt t c ce el ll l w wa al ll l d de ec co om mp po os si in ng g m ma ac ch hi in ne er ry y u un nd de er rl li ie es s t th he e f fu un nc ct ti io on na al l d di iv ve er rs si it ty y o of f f fo or re es st t f fu un ng gi i T Th he e p pl la an nt t c ce el ll l w wa al ll l d de ec co om mp po os si in ng g m ma ac ch hi in ne er ry y u un nd de er rl li ie es s t th he e f fu un nc ct ti io on na al l d di iv ve er rs si it ty y o of f f fo or re es st t f fu un ng gi i
We review the literature on the enzymes, genes, and whole gene clusters underlying natural product biosyntheses and their regulation in filamentous fungi. We have included literature references from 1958, yet the majority of citations are between 1995 and the present. A total of 295 references are cited.
The genus Aspergillus is renowned for its ability to produce a myriad of bioactive secondary metabolites. Although the propensity of biosynthetic genes to form contiguous clusters greatly facilitates assignment of putative secondary metabolite genes in the completed Aspergillus genomes, such analysis cannot predict gene expression and, ultimately, product formation. To circumvent this deficiency, we have examined Aspergillus nidulans microarrays for expressed secondary metabolite gene clusters by using the transcriptional regulator LaeA. Deletion or overexpression of laeA clearly identified numerous secondary metabolite clusters. A gene deletion in one of the clusters eliminated the production of the antitumor compound terrequinone A, a metabolite not described, from A. nidulans. In this paper, we highlight that LaeA-based genome mining helps decipher the secondary metabolome of Aspergilli and provides an unparalleled view to assess secondary metabolism gene regulation.
Summary
Ectomycorrhizal fungi are thought to have a key role in mobilizing organic nitrogen that is trapped in soil organic matter (SOM). However, the extent to which ectomycorrhizal fungi decompose SOM and the mechanism by which they do so remain unclear, considering that they have lost many genes encoding lignocellulose‐degrading enzymes that are present in their saprotrophic ancestors.Spectroscopic analyses and transcriptome profiling were used to examine the mechanisms by which five species of ectomycorrhizal fungi, representing at least four origins of symbiosis, decompose SOM extracted from forest soils.In the presence of glucose and when acquiring nitrogen, all species converted the organic matter in the SOM extract using oxidative mechanisms. The transcriptome expressed during oxidative decomposition has diverged over evolutionary time. Each species expressed a different set of transcripts encoding proteins associated with oxidation of lignocellulose by saprotrophic fungi. The decomposition ‘toolbox’ has diverged through differences in the regulation of orthologous genes, the formation of new genes by gene duplications, and the recruitment of genes from diverse but functionally similar enzyme families.The capacity to oxidize SOM appears to be common among ectomycorrhizal fungi. We propose that the ancestral decay mechanisms used primarily to obtain carbon have been adapted in symbiosis to scavenge nutrients instead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.