We show that SOM230 modulates somatostatin receptor trafficking in a manner clearly distinct from octreotide and somatostatin. These findings may provide an explanation for the differential regulation of somatostatin receptor responsiveness during long-term administration of stable somatostatin analogs.
Pasireotide (SOM230) is currently under clinical evaluation as a successor compound to octreotide for the treatment of acromegaly, Cushing's disease, and carcinoid tumors. Whereas octreotide acts primarily via the sst(2A) somatostatin receptor, pasireotide was designed to exhibit octreotide-like sst(2A) activity combined with enhanced binding to other somatostatin receptor subtypes. In the present study, we used phophosite-specific antibodies to examine agonist-induced phosphorylation of the rat sst(2A) receptor. We show that somatostatin and octreotide stimulate the complete phosphorylation of a cluster of four threonine residues within the cytoplasmic (353)TTETQRT(359) motif in a variety of cultured cell lines in vitro as well as in intact animals in vivo. This phosphorylation was mediated by G protein-coupled receptor kinases (GRK) 2 and 3 and followed by rapid cointernalization of the receptor and ss-arrestin into the same endocytic vesicles. In contrast, pasireotide failed to promote substantial phosphorylation and internalization of the rat sst(2A) receptor. In the presence of octreotide or SS-14, SOM230 showed partial agonist behavior, inhibiting phosphorylation, and internalization of sst(2A). Upon overexpression of GRK2 or GRK3, pasireotide stimulated selective phosphorylation of Thr356 and Thr359 but not of Thr353 or Thr354 within the (353)TTETQRT(359) motif. Pasireotide-mediated phosphorylation led to the formation of relatively unstable beta-arrestin-sst(2A) complexes that dissociated at or near the plasma membrane. Thus, octreotide and pasireotide are equally active in inducing classical G protein-dependent signaling via the sst(2A) somatostatin receptor. Yet, we find that they promote strikingly different patterns of sst(2A) receptor phosphorylation and, hence, stimulate functionally distinct pools of beta-arrestin.
Understanding the hemodynamics of blood flow in vascular pathologies such as intracranial aneurysms is essential for both their diagnosis and treatment. Computational fluid dynamics (CFD) simulations of blood flow based on patient-individual data are performed to better understand aneurysm initiation and progression and more recently, for predicting treatment success. In virtual stenting, a flow-diverting mesh tube (stent) is modeled inside the reconstructed vasculature and integrated in the simulation. We focus on steady-state simulation and the resulting complex multiparameter data. The blood flow pattern captured therein is assumed to be related to the success of stenting. It is often visualized by a dense and cluttered set of streamlines.We present a fully automatic approach for reducing visual clutter and exposing characteristic flow structures by clustering streamlines and computing cluster representatives. While individual clustering techniques have been applied before to streamlines in 3D flow fields, we contribute a general quantitative and a domain-specific qualitative evaluation of three state-of-the-art techniques. We show that clustering based on streamline geometry as well as on domain-specific streamline attributes contributes to comparing and evaluating different virtual stenting strategies. With our work, we aim at supporting CFD engineers and interventional neuroradiologists.
These findings support the suggestion that surgical trauma and cardiopulmonary bypass contribute to the inflammatory response after cardiac surgery, although trauma may contribute to a higher degree.
We performed experiments to characterize the inducibility of nucleotide excision repair (NER) in Caenorhabditis elegans, and to examine global gene expression in NER-deficient and -proficient strains as well as germline vs. somatic tissues, with and without genotoxic stress. We also carried out experiments to elucidate the importance of NER in the adult life of C. elegans under genotoxinstressed and control conditions. Adult lifespan was not detectably different between wild-type and NER-deficient xpa-1 nematodes under control conditions. However, exposure to 6 J/m 2 /day of ultraviolet C radiation (UVC) decreased lifespan in xpa-1 nematodes more than a dose of 100 J/m 2 / day in wild-type. Similar differential sensitivities were observed for adult size and feeding. Remarkably, global gene expression was nearly identical in young adult wild-type and xpa-1 nematodes, both in control conditions and three hours after exposure to 50 J/m 2 UVC. Neither NER genes nor protein activity were detectably inducible in young adults that lacked germ cells and developing embryos (glp-1 strain). However, expression levels of dozens of NER and other DNA damage response genes were much (5 to 30-fold) lower in adults lacking germ cells and developing embryos, suggesting that somatic and post-mitotic cells have a much lower DNA repair ability. Finally, we describe a refinement of our DNA damage assay that allows damage measurement in single nematodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.