For pedigree-based quantitative trait loci (QTL) association analysis, a range of methods utilizing within-family variation such as transmission-disequilibrium test (TDT)-based methods have been developed. In scenarios where stratification is not a concern, methods exploiting between-family variation in addition to within-family variation, such as the measured genotype (MG) approach, have greater power. Application of MG methods can be computationally demanding (especially for large pedigrees), making genomewide scans practically infeasible. Here we suggest a novel approach for genomewide pedigreebased quantitative trait loci (QTL) association analysis: genomewide rapid association using mixed model and regression (GRAMMAR). The method first obtains residuals adjusted for family effects and subsequently analyzes the association between these residuals and genetic polymorphisms using rapid least-squares methods. At the final step, the selected polymorphisms may be followed up with the full measured genotype (MG) analysis. In a simulation study, we compared type 1 error, power, and operational characteristics of the proposed method with those of MG and TDT-based approaches. For moderately heritable (30%) traits in human pedigrees the power of the GRAMMAR and the MG approaches is similar and is much higher than that of TDT-based approaches. When using tabulated thresholds, the proposed method is less powerful than MG for very high heritabilities and pedigrees including large sibships like those observed in livestock pedigrees. However, there is little or no difference in empirical power of MG and the proposed method. In any scenario, GRAMMAR is much faster than MG and enables rapid analysis of hundreds of thousands of markers.
BackgroundWith the availability of high density whole-genome single nucleotide polymorphism chips, genomic selection has become a promising method to estimate genetic merit with potentially high accuracy for animal, plant and aquaculture species of economic importance. With markers covering the entire genome, genetic merit of genotyped individuals can be predicted directly within the framework of mixed model equations, by using a matrix of relationships among individuals that is derived from the markers. Here we extend that approach by deriving a marker-based relationship matrix specifically for the trait of interest.Methodology/Principal FindingsIn the framework of mixed model equations, a new best linear unbiased prediction (BLUP) method including a trait-specific relationship matrix (TA) was presented and termed TABLUP. The TA matrix was constructed on the basis of marker genotypes and their weights in relation to the trait of interest. A simulation study with 1,000 individuals as the training population and five successive generations as candidate population was carried out to validate the proposed method. The proposed TABLUP method outperformed the ridge regression BLUP (RRBLUP) and BLUP with realized relationship matrix (GBLUP). It performed slightly worse than BayesB with an accuracy of 0.79 in the standard scenario.Conclusions/SignificanceThe proposed TABLUP method is an improvement of the RRBLUP and GBLUP method. It might be equivalent to the BayesB method but it has additional benefits like the calculation of accuracies for individual breeding values. The results also showed that the TA-matrix performs better in predicting ability than the classical numerator relationship matrix and the realized relationship matrix which are derived solely from pedigree or markers without regard to the trait. This is because the TA-matrix not only accounts for the Mendelian sampling term, but also puts the greater emphasis on those markers that explain more of the genetic variance in the trait.
The role of imprinting in body composition was investigated in an experimental cross between Chinese Meishan pigs and commercial Dutch pigs. A whole-genome scan revealed significant evidence for five quantitative trait loci (QTL) affecting body composition, of which four were imprinted. Imprinting was tested with a statistical model that separated the expression of paternally and maternally inherited alleles. For back fat thickness, a paternally expressed QTL was found on Sus scrofa chromosome 2 (SSC2), and a Mendelianexpressed QTL was found on SSC7. In the same region of SSC7, a maternally expressed QTL affecting muscle depth was found. Chromosome 6 harbored a maternally expressed QTL on the short arm and a paternally expressed QTL on the long arm, both affecting intramuscular fat content. The individual QTL explained from 2% up to 10% of the phenotypic variance. The known homologies to human and mouse did not reveal positional candidate genes. This study demonstrates that testing for imprinting should become a standard procedure to unravel the genetic control of multifactorial traits.
Summary We describe a genetic variation map for the chicken genome containing 2.8 million single nucleotide polymorphisms (SNPs), based on a comparison of the sequences of 3 domestic chickens (broiler, layer, Silkie) to their wild ancestor Red Jungle Fowl (RJF). Subsequent experiments indicate that at least 90% are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about 5 SNP/kb for almost every possible comparison between RJF and domestic lines, between two different domestic lines, and within domestic lines - contrary to the idea that domestic animals are highly inbred relative to their wild ancestors. In fact, most of the SNPs originated prior to domestication, and there is little to no evidence of selective sweeps for adaptive alleles on length scales of greater than 100 kb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.