In this paper we present an efficient algorithm for the calculation of photonic crystal band structures and band structures of photonic crystal waveguides. Our method relies on the fact that the dispersion curves of the band structure are smooth functions of the quasi-momentum in the one-dimensional Brillouin zone. We show the derivation and computation of the group velocity, the group velocity dispersion, and any higher derivative of the dispersion curves. These derivatives are then employed in a Taylor expansion of the dispersion curves. We control the error of the Taylor expansion with the help of a residual estimate and introduce an adaptive scheme for the selection of nodes in the one-dimensional Brillouin zone at which we solve the underlying eigenvalue problem and compute the derivatives of the dispersion curves. These derivatives are then employed in a Taylor expansion of the dispersion curves. We control the error of the Taylor expansion with the help of a residual estimate and introduce an adaptive scheme for the selection of nodes in the one-dimensional Brillouin zone at which we solve the underlying eigenvalue problem and compute the derivatives of the dispersion curves. The proposed algorithm is not only advantageous as it decreases the computational effort to compute the band structure but also because it allows for the identification of crossings and anti-crossings of dispersion curves, respectively. This identification is not possible with the standard approach of solving the underlying eigenvalue problem at a discrete set of values of the quasi-momentum without taking the mode parity into account.
The efficient and reliable computation of guided modes in photonic crystal wave-guides is of great importance for designing optical devices. Transparent boundary conditions based on Dirichlet-to-Neumann operators allow for an exact computation of well-confined modes and modes close to the band edge in the sense that no modelling error is introduced. The well-known super-cell method, on the other hand, introduces a modelling error which may become prohibitively large for guided modes that are not well-confined. The Dirichlet-to-Neumann transparent boundary conditions are, however, not applicable for all frequencies as they are not uniquely defined and their computation is unstable for a countable set of frequencies that correspond to so called Dirichlet eigenvalues. In this work we describe how to overcome this theoretical difficulty introducing Robin-to-Robin transparent boundary conditions whose construction do not exhibit those forbidden frequencies. They seem, hence, well suited for an exact and reliable computation of guided modes in photonic crystal wave-guides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.