No abstract
This paper intends to propose options for climate neutrality concepts by taking non-German international experiences and decisions made into account. Asia-Pacific and Arabic countries do have already same lessons learned by large-scale projects with regard to economic evaluations. Quite a few conceptual studies to generate the climate neutrality of the chemical–pharmaceutical industry in Germany have been published recently. Most of the studies differ even in magnitude but do not refer to or evaluate the other ones. These are all first theoretical feasibility studies. Experimental piloting is not far developed; only few and only stand-alone parts are operated, with no overall concepts. Economic evaluation is missing nearly completely. Economic analysis shows a factor 3 more expensive green technologies. Even if a large optimization potential of about 30% during manufacturing optimization is assumed as significant, cost increases would result. To make green products nevertheless competitive, the approach is to increase the carbon-source cost analogue, e.g., by CO2/ton taxes by around EUR 100, which would lead to about factor 3 higher consumer prices regarding the material amount. Furthermore, some countries would not participate in such increases and would have benefits on the world market. Whether any customs-duties policy could balance that is generally under question. Such increasing costs are not imaginable for any social-political system. Therefore, the only chance to realize consequent climate neutrality is to speed up research on more efficient and economic technologies, including, e.g., reaction intensification technologies such as plasma ionization, catalyst optimization, section coupling to cement, steel and waste combustion branches as well as pinch technology integration and appropriate scheduling. In addition, digital twins and process analytical technologies for consequent process automation would help to decrease costs. All those technologies seem to lead to even less personnel, but who need to be highly educated to deal with complex integrated systems. Research and education/training has to be designed for those scenarios. Germany as a resource-poor country could benefit from its human resources. Germany is and will be an energy importing country.
Global primary energy consumption has increased tenfold over the course of the 20th Century, the availability of non-renewable energy is becoming scarce, and the burning of fossil fuels is leading to global warming. Climate change has now become tangible. The will to act against fossil fuels has become apparent in the western world, and in Germany in particular. This poses a particular challenge for the chemical and pharmaceutical industry, since, in the future, not only will the energy input, but also the feedstock, have to come from non-fossil sources. They must be replaced by carbon capture and utilization, and the exploitation of a circular economy. Concepts for a climate-neutral chemical–pharmaceutical industry have been developed and evaluated. Due to a high predicted consumption of renewable energies and an insufficient expansion of these, Germany will remain an energy importer in the future. The largest consumer in a climate-neutral chemical–pharmaceutical industry will be electrolysis for hydrogen (up to 81%, 553 TWh/a). This can be circumvented by importing green ammonia and cracking. This will require investments of EUR 155 bn. An additional benefit will be increased independence from fossil resource imports, as green ammonia can be produced in a multitude of nations with strong potential for renewable energies and a diversified set of exporting nations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.