Model predictive control (MPC) is a strong candidate for modern wind turbine control. While the design of model predictive wind turbine controllers in simulations has been extensively investigated in academic studies, the application of these controllers to real wind turbines reveals open research challenges. In this work, we focus on the validation of a linear time-variant MPC system for a 3 MW wind turbine in a full-scale field test. First, the study proves the MPC’s capability to control the real wind turbine in the partial load region. Compared to the turbine’s baseline PID controller, the MPC system offers similar results for the electrical power output and for the occurring mechanical loads. Second, the study validates a previously proposed, simulation-based rapid control prototyping process for a systematic MPC development. The systematic development process allows to completely design and parameterize the MPC system in a simulative environment independent of the real wind turbine. Through the rapid control prototyping process, the MPC commissioning in the wind turbine’s programmable logic controller can be realized within a few hours without any modifications required in the field. Thus, this study establishes the proof of concept for a linear time-variant MPC system for a 3 MW wind turbine in a full-scale field test and bridges the gap between the control design and field testing of MPC systems for wind turbines in the multi-megawatt range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.