In contrast to the partition coefficient octanol/water the molecular size of penetrating drugs has a noticeable influence on the permeability of the human nail plate and a keratin membrane from bovine hooves. The relationship between permeability and molecular weight is founded on well-established theories. The correlation between the permeability of the nail plate and that of the hoof membrane allows a prediction of the nail permeability after determination of the drug penetration through the hoof membrane. The maximum flux of ten antimycotics (amorolfine, bifonazole, ciclopirox, clotrimazole, econazole, griseofulvin, ketoconazole, naftifine, nystatin and tolnaftate) through the nail plate was predicted on the basis of their penetration rates through the hoof membrane and their water solubilities. An efficacy coefficient against onychomycoses was calculated from the maximum flux and the minimum inhibitory concentration. Accordingly, amorolfine, ciclopirox, econazole and naftifine are expected to be especially effective against dermatophytes, whereas in the case of an infection with yeasts only, amorolfine and ciclopirox are promising.
Penetration of homologous nicotinic acid esters through the human nail and a keratin membrane from bovine hooves was investigated by modified Franz diffusion cells in-vitro to study the transport mechanism. The partition coefficient octanol/water PCOct/W of the esters was over the range 7 to > 51,000. The permeability coefficient P of the nail plate as well as the hoof membrane did not increase with increasing partition coefficient or lipophilicity of the penetrating substance. This indicates that both barriers behave like hydrophilic gel membranes rather than lipophilic partition membranes as in the case of the stratum corneum. Penetration studies with the model compounds paracetamol and phenacetin showed that the maximum flux was first a function of the drug solubility in water or in the swollen keratin matrix. Dissociation hindered the diffusion of benzoic acid and pyridine through the hoof membrane. Since keratin, a protein with an isoelectric point of about 5, is also charged, this reduction can be attributed to an exclusion of the dissociating substance due to the Donnan equilibrium. Nevertheless, the simultaneous enhancement of the water solubility makes a distinct increase of the maximum flux possible. In order to screen drugs for potential topical application to the nail plate, attention has to be paid mainly to the water solubility of the compound. The bovine hoof membrane may serve as an appropriate model for the nail.
Lipophilic vehicles and especially nail lacquers are more appropriate for topical application on the nail than aqueous systems because of their better adhesion. This work has, therefore, studied the penetration through the human nail plate of the model compound chloramphenicol from the lipophilic vehicles medium chain triglycerides and n-octanol and from a lacquer based on quaternary poly(methyl methacrylates) (Eudragit RL). The results were compared with data obtained with a keratin membrane from bovine hooves. If the swelling of the nail plate or the hoof membrane is not altered by use of lipophilic vehicles, the maximum flux of the drug is independent of its solubility in the vehicle and is the same as that from a saturated aqueous solution. These vehicles are not able to enter the hydrophilic keratin membrane because of their non-polar character and so cannot change the solubility of the penetrating substance in the barrier. If the concentration of the drug in the nail lacquer is sufficiently high, the maximum flux through both barriers equals that from aqueous vehicles or even exceeds it because of the formation of a supersaturated system. Penetration through the nail plate follows first order kinetics after a lag-time of 400 h. The course of penetration through the hoof membrane is initially membrane-controlled and later becomes a matrix-controlled process because of the membrane's greater permeability. Chloramphenicol is dissolved in the lacquer up to a concentration of 31%. The relative release rates from these solution matrices are independent of the drug concentration but they decrease on changing to a suspension matrix. These results show that drug flux is independent of the character of the vehicle and that penetration of the drug is initially membrane-controlled and changes to being matrix-controlled as the drug content of the lacquer decreases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.