ObjectiveOsteoarthritis of the hip (OA) is a common degenerative disorder of the joint cartilage that presents a major public health problem worldwide. While intrinsic risk factors (e.g, body mass and morphology) have been identified, external risk factors are not well understood. In this systematic review, the evidence for workload as a risk factor for hip OA is summarized and used to derive recommendations for prevention and further research.MethodsEpidemiological studies on workload or occupation and osteoarthritis of the hip were identified through database and bibliography searches. Using pre-defined quality criteria, 30 studies were selected for critical evaluation; six of these provided quantitative exposure data.ResultsStudy results were too heterogeneous to develop pooled risk estimates by specific work activities. The weight of evidence favors a graded association between long-term exposure to heavy lifting and risk of hip OA. Long-term exposure to standing at work might also increase the risk of hip OA.ConclusionsIt is not possible to estimate a quantitative dose-response relationship between workload and hip OA using existing data, but there is enough evidence available to identify job-related heavy lifting and standing as hazards, and thus to begin developing recommendations for preventing hip OA by limiting the amount and duration of these activities. Future research to identify specific risk factors for work-related hip OA should focus on implementing rigorous study methods with quantitative exposure measures and objective diagnostic criteria.
There is a need of guidance on how local irritancy data should be incorporated into risk assessment procedures, particularly with respect to the derivation of occupational exposure limits (OELs). Therefore, a board of experts from German committees in charge of the derivation of OELs discussed the major challenges of this particular end point for regulatory toxicology. As a result, this overview deals with the question of integrating results of local toxicity at the eyes and the upper respiratory tract (URT). Part 1 describes the morphology and physiology of the relevant target sites, i.e., the outer eye, nasal cavity, and larynx/pharynx in humans. Special emphasis is placed on sensory innervation, species differences between humans and rodents, and possible effects of obnoxious odor in humans. Based on this physiological basis, Part 2 describes a conceptual model for the causation of adverse health effects at these targets that is composed of two pathways. The first, “sensory irritation” pathway is initiated by the interaction of local irritants with receptors of the nervous system (e.g., trigeminal nerve endings) and a downstream cascade of reflexes and defense mechanisms (e.g., eyeblinks, coughing). While the first stages of this pathway are thought to be completely reversible, high or prolonged exposure can lead to neurogenic inflammation and subsequently tissue damage. The second, “tissue irritation” pathway starts with the interaction of the local irritant with the epithelial cell layers of the eyes and the URT. Adaptive changes are the first response on that pathway followed by inflammation and irreversible damages. Regardless of these initial steps, at high concentrations and prolonged exposures, the two pathways converge to the adverse effect of morphologically and biochemically ascertainable changes. Experimental exposure studies with human volunteers provide the empirical basis for effects along the sensory irritation pathway and thus, “sensory NOAEChuman” can be derived. In contrast, inhalation studies with rodents investigate the second pathway that yields an “irritative NOAECanimal.” Usually the data for both pathways is not available and extrapolation across species is necessary. Part 3 comprises an empirical approach for the derivation of a default factor for interspecies differences. Therefore, from those substances under discussion in German scientific and regulatory bodies, 19 substances were identified known to be human irritants with available human and animal data. The evaluation started with three substances: ethyl acrylate, formaldehyde, and methyl methacrylate. For these substances, appropriate chronic animal and a controlled human exposure studies were available. The comparison of the sensory NOAEChuman with the irritative NOAECanimal (chronic) resulted in an interspecies extrapolation factor (iEF) of 3 for extrapolating animal data concerning local sensory irritating effects. The adequacy of this iEF was confirmed by its application to additional substances with lower data density (acet...
Background We compared psychomotor vigilance in female shift workers of the Bergmannsheil University Hospital in Bochum, Germany (N = 74, 94% nurses) after day and night shifts. Methods Participants performed a 3-minute Psychomotor Vigilance Task (PVT) test bout at the end of two consecutive day and three consecutive night shifts, respectively. Psychomotor vigilance was analyzed with respect to mean reaction time, percentage of lapses and false starts, and throughput as an overall performance score, combining reaction time and error frequencies. We also determined the reaction time coefficient of variation (RTCV) to assess relative reaction time variability after day and night shifts. Further, we examined the influence of shift type (night vs. day) by mixed linear models with associated 95% confidence intervals (CI), adjusted for age, chronotype, study day, season, and the presence of obstructive sleep apnea (OSA). Results At the end of a night shift, reaction times were increased (β = 7.64; 95% CI 0.94; 14.35) and the number of lapses higher compared to day shifts (exp(β) = 1.55; 95% CI 1.16–2.08). By contrast, we did not observe differences in the number of false starts between day and night shifts. Throughput was reduced after night shifts (β = -15.52; 95% CI -27.49; -3.46). Reaction times improved across consecutive day and night shifts, whereas the frequency of lapses decreased after the third night. RTCV remained unaffected by both, night shifts and consecutive shift blocks. Discussion Our results add to the growing body of literature demonstrating that night-shift work is associated with decreased psychomotor vigilance. As the analysis of RTCV suggests, performance deficits may selectively be driven by few slow reactions at the lower end of the reaction time distribution function. Comparing intra-individual PVT-performances over three consecutive night and two consecutive day shifts, we observed performance improvements after the third night shift. Although a training effect cannot be ruled out, this finding may suggest better adaptation to the night schedule if avoiding fast-changing shift schedules.
Background:In 1996 and 2009, the International Agency for Research on Cancer classified silica as carcinogenic to humans. The exposure–response relationship between silica and lung cancer risk, however, is still debated. Data from the German uranium miner cohort study were used to further investigate this relationship.Methods:The cohort includes 58 677 workers with individual information on occupational exposure to crystalline silica in mg m−3-years and the potential confounders radon and arsenic based on a detailed job-exposure matrix. In the follow-up period 1946–2003, 2995 miners died from lung cancer. Internal Poisson regression with stratification by age and calendar year was used to estimate the excess relative risk (ERR) per dust-year. Several models including linear, linear quadratic and spline functions were applied. Detailed adjustment for cumulative radon and arsenic exposure was performed.Results:A piecewise linear spline function with a knot at 10 mg m−3-years provided the best model fit. After full adjustment for radon and arsenic no increase in risk <10 mg m−3-years was observed. Fixing the parameter estimate of the ERR in this range at 0 provided the best model fit with an ERR of 0.061 (95% confidence interval: 0.039, 0.083) >10 mg m−3-years.Conclusion:The study confirms a positive exposure–response relationship between silica and lung cancer, particularly for high exposures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.