Inductively coupled plasma mass spectrometry (ICP-MS) was combined with UV–vis−NIR spectrophotometry and transmission electron microscopy to determine the nanocrystal composition and molar extinction coefficient ϵ of colloidal PbSe quantum dot (Q-PbSe) suspensions. The ICP-MS results show a nonstoichiometric Pb/Se ratio, with a systematic excess of lead for all samples studied. The observed ratio is consistent with a faceted spherical Q-PbSe model, composed of a quasi stoichiometric Q-PbSe core terminated by a Pb surface shell. At high photon energies, we find that ϵ scales with the nanocrystal volume, irrespective of the Q-PbSe size. From ϵ, we calculated a size-independent absorption coefficient. Its value is in good agreement with the theoretical value for bulk PbSe. At the band gap, ϵ is size-dependent. The resulting absorption coefficient increases quadratically with decreasing Q-PbSe size. Calculations of the oscillator strength of the first optical transition are in good agreement with theoretical tight binding calculations, showing that the oscillator strength increases linearly with Q-PbSe size.
In 1996, Matsuzawa et al. reported on the extremely long-lasting afterglow of SrAl2O4:Eu2+ codoped with Dy3+ ions, which was more than 10-times brighter than the previously widely used ZnS:Cu,Co. Since then, research for stable and efficient persistent phosphors has continuously gained popularity. However, even today - almost 15 years after the discovery of SrAl2O4:Eu2+, Dy3+ - the number of persistent luminescent materials is still relatively low. Furthermore, the mechanism behind this phenomenon is still unclear. Although most authors agree on the general features, such as the existence of long-lived trap levels, many details are still shrouded in mystery. In this review, we present an overview of the important classes of known persistent luminescent materials based on Eu2+-emission and how they were prepared, and we take a closer look at the models and mechanisms that have been suggested to explain bright afterglow in various compounds.
Light emitting diodes (LEDs) are on the verge of a breakthrough in general lighting, due to their rapidly improving efficiency. Currently, white LEDs with high color rendering are mainly based on wavelength conversion by one or more phosphor materials. This Review first describes how to quantify the quality of a light source, discussing the color rendering index (CRI) and alternative color quality indices. Then, six main criteria are identified and discussed, which should be fulfilled by a phosphor candidate to be considered for actual application in LEDs. These criteria deal with the shape and position of the emission and the excitation spectra, the thermal quenching behavior, the quantum efficiency, the chemical and thermal stability and finally with the occurrence of saturation effects. Based on these criteria, the most common dopant ions (broad-band emitting Eu AbstractLight emitting diodes (LEDs) are on the verge of a breakthrough in general lighting, due to their rapidly improving efficiency. Currently, white LEDs with high color rendering are mainly based on wavelength conversion by one or more phosphor materials. This Review first describes how to quantify the quality of a light source, discussing the color rendering index (CRI) and alternative color quality indices. Then, six main criteria are identified and discussed, which should be fulfilled by a phosphor candidate to be considered for actual application in LEDs. These criteria deal with the shape and position of the emission and the excitation spectra, the thermal quenching behavior, the quantum efficiency, the chemical and thermal stability and finally with the occurrence of saturation effects. Based on these criteria, the most common dopant ions (broad-band emitting Eu
Compared with fuel cells and electrochemical capacitors, dielectric capacitors are regarded as promising devices to store electrical energy for pulsed power systems due to their fast charge/discharge rates and ultrahigh...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.