Bilirubin, a breakdown product of heme, is normally glucuronidated and excreted by the liver into bile. Failure of this system can lead to a buildup of conjugated bilirubin in the blood, resulting in jaundice. The mechanistic basis of bilirubin excretion and hyperbilirubinemia syndromes is largely understood, but that of Rotor syndrome, an autosomal recessive disorder characterized by conjugated hyperbilirubinemia, coproporphyrinuria, and near-absent hepatic uptake of anionic diagnostics, has remained enigmatic. Here, we analyzed 8 Rotorsyndrome families and found that Rotor syndrome was linked to mutations predicted to cause complete and simultaneous deficiencies of the organic anion transporting polypeptides OATP1B1 and OATP1B3. These important detoxification-limiting proteins mediate uptake and clearance of countless drugs and drug conjugates across the sinusoidal hepatocyte membrane. OATP1B1 polymorphisms have previously been linked to drug hypersensitivities. Using mice deficient in Oatp1a/1b and in the multispecific sinusoidal export pump Abcc3, we found that Abcc3 secretes bilirubin conjugates into the blood, while Oatp1a/1b transporters mediate their hepatic reuptake. Transgenic expression of human OATP1B1 or OATP1B3 restored the function of this detoxification-enhancing liver-blood shuttle in Oatp1a/1b-deficient mice. Within liver lobules, this shuttle may allow flexible transfer of bilirubin conjugates (and probably also drug conjugates) formed in upstream hepatocytes to downstream hepatocytes, thereby preventing local saturation of further detoxification processes and hepatocyte toxic injury. Thus, disruption of hepatic reuptake of bilirubin glucuronide due to coexisting OATP1B1 and OATP1B3 deficiencies explains Rotor-type hyperbilirubinemia. Moreover, OATP1B1 and OATP1B3 null mutations may confer substantial drug toxicity risks.
Mutations in ATP8B1 cause progressive familial intrahepatic cholestasis type 1 and benign recurrent intrahepatic cholestasis type 1. Previously, we have shown in mice that Atp8b1 deficiency leads to enhanced biliary excretion of phosphatidylserine, and we hypothesized that ATP8B1 is a flippase for phosphatidylserine. However, direct evidence for this function is still lacking. In Saccharomyces cerevisiae, members of the Cdc50p/Lem3p family are essential for proper function of the ATP8B1 homologs. We have studied the role of two human members of this family, CDC50A and CDC50B, in the routing and activity of ATP8B1. When only ATP8B1 was expressed in Chinese hamster ovary cells, the protein localized to the endoplasmic reticulum. Coexpression with CDC50 proteins resulted in relocalization of ATP8B1 from the endoplasmic reticulum to the plasma membrane. Only when ATP8B1 was coexpressed with CDC50 proteins was a 250%-500% increase in the translocation of fluorescently labeled phosphatidylserine observed. Importantly, natural phosphatidylserine exposure in the outer leaflet of the plasma membrane was reduced by 17%-25% in cells coexpressing ATP8B1 and CDC50 proteins in comparison with cells expressing ATP8B1 alone. The coexpression of ATP8B1 and CDC50A in WIF-B9 cells resulted in colocalization of both proteins in the canalicular membrane. Conclusion: Our data indicate that CDC50 proteins are pivotal factors in the trafficking of ATP8B1 to the plasma membrane and thus may be essential determinants of ATP8B1-related disease. In the plasma membrane, ATP8B1 functions as a flippase for phosphatidylserine. Finally, CDC50A may be the potential -subunit or chaperone for ATP8B1 in hepatocytes. (HEPATOLOGY 2008;47: 268-278.)
Progressive familial intrahepatic cholestasis type 1 (PFIC1, Byler disease, OMIM 211600) is a severe inherited liver disease caused by mutations in ATP8B1. ATP8B1 is a member of the type 4 subfamily of P-type ATPases, which are phospholipid flippases. PFIC1 patients generally develop end-stage liver disease before the second decade of life. The disease is characterized by impaired biliary bile salt excretion, but the mechanism whereby impaired ATP8B1 function results in cholestasis is unclear. In a mouse model for PFIC1, we observed decreased resistance of the hepatocanalicular membrane to hydrophobic bile salts as evidenced by enhanced biliary recovery of phosphatidylserine, cholesterol, and ectoenzymes. In liver specimens from PFIC1 patients, but not in those from control subjects, ectoenzyme expression at the canalicular membrane was markedly deficient. In isolated mouse livers Atp8b1 deficiency impaired the transport of hydrophobic bile salts into bile. In conclusion, our study shows that Atp8b1 deficiency causes loss of canalicular phospholipid membrane asymmetry that in turn renders the canalicular membrane less resistant toward hydrophobic bile salts. The loss of phospholipid asymmetry may subsequently impair bile salt transport and cause cholestasis. Supplementary material for this article can be found on the HEPATOLOGY website (http://interscience.wiley.com/jpages/0270-9139/suppmat/ index.html). (HEPATOLOGY 2006;44:195-204.)
Organic anion transporting polypeptides (OATPs) are uptake transporters for a broad range of endogenous compounds and xenobiotics. To investigate the physiologic and pharmacologic roles of OATPs of the 1A and 1B subfamilies, we generated mice lacking all established and predicted mouse Oatp1a/1b transporters (referred to as Slco1a/1b -/-mice, as SLCO genes encode OATPs). Slco1a/1b -/-mice were viable and fertile but exhibited markedly increased plasma levels of bilirubin conjugated to glucuronide and increased plasma levels of unconjugated bile acids. The unexpected conjugated hyperbilirubinemia indicates that Oatp1a/ 1b transporters normally mediate extensive hepatic reuptake of glucuronidated bilirubin. We therefore hypothesized that substantial sinusoidal secretion and subsequent Oatp1a/1b-mediated reuptake of glucuronidated compounds can occur in hepatocytes under physiologic conditions. This alters our perspective on normal liver functioning. Slco1a/1b -/-mice also showed drastically decreased hepatic uptake and consequently increased systemic exposure following i.v. or oral administration of the OATP substrate drugs methotrexate and fexofenadine. Importantly, intestinal absorption of oral methotrexate or fexofenadine was not affected in Slco1a/1b -/-mice. Further analysis showed that rifampicin was an effective and specific Oatp1a/1b inhibitor in controlling methotrexate pharmacokinetics. These data indicate that Oatp1a/1b transporters play an essential role in hepatic reuptake of conjugated bilirubin and uptake of unconjugated bile acids and drugs. Slco1a/1b -/-mice will provide excellent tools to study further the role of Oatp1a/1b transporters in physiology and drug disposition.
The ATP-binding-cassette (ABC) transporter multidrug resistance protein (MRP) 2 (ABCC2) forms a natural barrier and efflux system for various (conjugates of) drugs, other xenotoxins, and endogenous compounds. To obtain insight in the pharmacological and physiological functions of Mrp2, we generated Mrp2 knockout mice, which were viable and fertile but suffered from mild hyperbilirubinemia due to impaired excretion of bilirubin monoglucuronides into bile. The mice also had an 80-fold decreased biliary glutathione excretion and a 63% reduced bile flow. Levels of Mrp3 (Abcc3) in liver and Mrp4 The multidrug transporter MRP2 (ABCC2, cMOAT), a member of the ATP-binding-cassette (ABC) superfamily, confers resistance to a range of anticancer drugs (Borst and Oude Elferink, 2002;Chan et al., 2004). The protein is mainly present in the apical membranes of polarized cells in liver, small intestine, and kidney and mediates active transport of both endogenous and xenobiotic compounds to bile, urine, or feces (Chan et al., 2004). MRP2 is functionally deficient in patients with the Dubin-Johnson syndrome (Zimniak, 1993), in TR Ϫ rats (Jansen et al., 1985), and Eisai hyperbilirubinemic rats (EHBRs) (Hosokawa et al., 1992), which all show impaired secretion of bilirubin glucuronides into the bile and as a consequence suffer from conjugated hyperbilirubinemia (Jansen et al., 1985; Hosokawa et al., 1992;Zimniak, 1993). The mutant rat strains also show substantially reduced biliary excretion of glutathione and glutathione conjugates (Paulusma et al., 1999).Besides its role in transport of endogenous compounds, MRP2 plays an important role in the transport of various 1 These authors contributed equally to this work. Article, publication date, and citation information can be found at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.