Inorganic-binding peptides are in the focus of research fields such as materials science, nanotechnology, and biotechnology. Applications concern surface functionalization by the specific coupling to inorganic target substrates, the binding of soluble molecules for sensing applications, or biomineralization approaches for the controlled formation of inorganic materials. The specific molecular recognition of inorganic surfaces by peptides is of major importance for such applications. Zinc oxide (ZnO) is an important semiconductor material which is applied in various devices. In this study the molecular fundamentals for a ZnO-binding epitope was determined. 12-mer peptides, which specifically bind to the zinc- or/and the oxygen-terminated sides of single-crystalline ZnO (0001) and (000-1) substrates, were selected from a random peptide library using the phage display technique. For two ZnO-binding peptides the mandatory amino acid residues, which are of crucial importance for the specific binding were determined with a label-free nuclear magnetic resonance (NMR) approach. NMR spectroscopy allows the identification of pH dependent interaction sites on the atomic level of 12-mer peptides and ZnO nanoparticles. Here, ionic and polar interaction forces were determined. For the oxygen-terminated side the consensus peptide-binding sequence (HSXXH) was predicted in silico and confirmed by the NMR approach.
A bioinspired approach to the fabrication of nanostructured functional devices is described. ZnO nanowires are formed by self‐assembly of nanosized ZnO building blocks controlled by tobacco mosaic virus (TMV) templates at nearly ambient conditions. This process allows the integration of TMV/ZnO nanostructures into field‐effect transistors (FETs) with prestructured electrodes. The FETs operate as‐deposited, without further treatment.
SummaryThe coating of regular-shaped, readily available nanorod biotemplates with inorganic compounds has attracted increasing interest during recent years. The goal is an effective, bioinspired fabrication of fiber-reinforced composites and robust, miniaturized technical devices. Major challenges in the synthesis of applicable mineralized nanorods lie in selectivity and adjustability of the inorganic material deposited on the biological, rod-shaped backbones, with respect to thickness and surface profile of the resulting coating, as well as the avoidance of aggregation into extended superstructures. Nanotubular tobacco mosaic virus (TMV) templates have proved particularly suitable towards this goal: Their multivalent protein coating can be modified by high-surface-density conjugation of peptides, inducing and governing silica deposition from precursor solutions in vitro. In this study, TMV has been equipped with mineralization-directing peptides designed to yield silica coatings in a reliable and predictable manner via precipitation from tetraethoxysilane (TEOS) precursors. Three peptide groups were compared regarding their influence on silica polymerization: (i) two peptide variants with alternating basic and acidic residues, i.e. lysine–aspartic acid (KD)x motifs expected to act as charge-relay systems promoting TEOS hydrolysis and silica polymerization; (ii) a tetrahistidine-exposing polypeptide (CA4H4) known to induce silicification due to the positive charge of its clustered imidazole side chains; and (iii) two peptides with high ZnO binding affinity. Differential effects on the mineralization of the TMV surface were demonstrated, where a (KD)x charge-relay peptide (designed in this study) led to the most reproducible and selective silica deposition. A homogenous coating of the biotemplate and tight control of shell thickness were achieved.
Catalytically active colloids are model systems for chemical motors and active matter. It is desirable to replace the inorganic catalysts and the toxic fuels that are often used with biocompatible enzymatic reactions. However, compared to inorganic catalysts, enzyme-coated colloids tend to exhibit less activity. Here, we show that the self-assembly of genetically engineered M13 bacteriophages that bind enzymes to magnetic beads ensures high and localized enzymatic activity. These phage-decorated colloids provide a proteinaceous environment for directed enzyme immobilization. The magnetic properties of the colloidal carrier particle permit repeated enzyme recovery from a reaction solution, while the enzymatic activity is retained. Moreover, localizing the phage-based construct with a magnetic field in a microcontainer allows the enzyme–phage–colloids to function as an enzymatic micropump, where the enzymatic reaction generates a fluid flow. This system shows the fastest fluid flow reported to date by a biocompatible enzymatic micropump. In addition, it is functional in complex media including blood, where the enzyme-driven micropump can be powered at the physiological blood-urea concentrations.
We report on the nucleotide sequences of geminiviruses of the genus Bemogovirus infecting Sida micrantha Schr., a common weed in Brazil. For decades, the mosaic frequently associated with Sida plants was considered to be caused by a Brazilian strain of Abutilon mosaic virus (AbMV). By infection studies and sequence comparisons, we demonstrate that it is associated with a complex of at least two begomoviruses as different from AbMV as most South American geminiviruses. Two molecules of DNA A (A1, A2) and three of DNA B (B1, B2, B3) were cloned and sequenced. According to the high homology in their common regions, DNA A1 and DNA B3, as well as DNA A2 and DNA B2, are cognate components of two begomoviruses, which were infectious in Nicotiana benthamiana plants. No trans-replication was found for any other A/B combination. The intergenic region of DNA B2 appears to be the product of the recombination between DNA B1 and DNA A2. These results show that a coinfection of begomoviruses can persist over decades, producing a reservoir of partially recombined but distinct geminiviruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.