Laser-induced breakdown spectroscopy (LIBS) in combination with a conventional mine prodder is applied for remote detection of explosives and mine housing materials. High power subnanosecond laser pulses (pulse powerEp= 0.6 mJ and pulse duration Δt= 650 ps) at 1064 nm with a typical repetition rate of 10 kHz are generated by using a passively Q-switched Cr4+:Nd3+:YAG microchip-laser as seed-laser for an Yb-fiber amplifier. In the present investigation, the ratios of “late” and “early” LIBS intensities for the cyanide (CN) plasma emission at 388 nm and for the C-emission at 248 nm are used for data analysis. This allows the classification of different explosives and mine casing materials under real time conditions and also similar applications to materials processing.
What we believe to be a new optical approach for the identification of mines and explosives by analyzing the surface materials and not only bulk is developed. A conventional manually operated mine prodder is upgraded by laser-induced breakdown spectroscopy (LIBS). In situ and real-time information of materials that are in front of the prodder are obtained during the demining process in order to optimize the security aspects and the speed of demining. A Cr4+:Nd3+:YAG microchip laser is used as a seed laser for an ytterbium-fiber amplifier to generate high-power laser pulses at 1064 nm with pulse powers up to E(p) = 1 mJ, a repetition rate of f(rep.) = 2-20 kHz and a pulse duration of t(p) = 620 ps. The recorded LIBS signals are analyzed by applying neural networks for the data analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.