In the last years more and more often detections of antimicrobially active compounds (“antibiotics”) in surface waters have been reported. As a possible input pathway in most cases municipal sewage has been discussed. But as an input from the realm of agriculture is conceivable as well, in this study it should be investigated if an input can occur via the pathway application of liquid manure on fields with the subsequent mechanisms surface run‐off/interflow, leaching, and drift. For this purpose a series of surface waters, soils, and liquid manures from North Rhine‐Westphalia (Northwestern Germany) were sampled and analyzed for up to 29 compounds by HPLC‐MS/MS.In each of the surface waters antibiotics could be detected. The highest concentrations were found in samples from spring (300 ng/L of erythromycin). Some of the substances detected (e.g., tylosin), as well as characteristics in the landscape suggest an input from agriculture in some particular cases. In the investigation of different liquid manure samples by a fast immunoassay method sulfadimidine could be detected in the range of 1…2 mg/kg. Soil that had been fertilized with this liquid manure showed a content of sulfadimidine extractable by accelerated solvent extraction (ASE) of 15 μg/kg dry weight even 7 months after the application. This indicates the high stability of some antibiotics in manure and soil.
Over the past decade, there has been growing concern regarding the role of toxigenic fungi in damp indoor environments; however, there is still a lack of field investigations on exposure to mycotoxins. The goal of our pilot study was to quantify the proportion of toxigenic Aspergillus versicolor isolates in native carpet dust from damp dwellings with mold problems and to determine whether sterigmatocystin can be detected in this matrix. Carpet dust samples (n ؍ 11) contained from <2.5 ؋ 10 1 to 3.6 ؋ 10 5 (median, 3.1 ؋ 10 4 ) A. versicolor CFU/g of dust, and the median proportion of A. versicolor from total culturable fungi was 18%. Based on thin-layer chromatography detection of sterigmatocystin, 49 of 50 A. versicolor isolates (98%) were found to be toxigenic in vitro. By using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry, sterigmatocystin could be detected in low concentrations (2 to 4 ng/g of dust) in 2 of 11 native carpet dust samples. From this preliminary study, we conclude that most strains of A. versicolor isolated from carpet dust are able to produce sterigmatocystin in vitro and that sterigmatocystin may occasionally occur in carpet dust from damp indoor environments. Further research and systematic field investigation are needed to confirm our results and to provide an understanding of the health implications of mycotoxins in indoor environments.Over the past decade, there has been growing concern regarding the role of toxigenic fungi in damp indoor environments (6,18,37,43). Several epidemiological studies indicate that children and adults living in damp indoor environments are more likely to suffer from respiratory as well as general symptoms (e.g., tiredness, headaches, nausea, and vomiting), and exposure to fungi has been suggested as being an important contributory factor (1,3,4,7,32,34,35). The underlying mechanisms, however, are not well known (17,33). Case reports and studies of agricultural workers indicate that certain health effects occur as a result of inhalation of molds, which are due at least in part to mycotoxins (6,8,9). To date, however, relatively few studies have examined exposure to mycotoxins in indoor environments. The current scientific literature on this topic focuses mainly on trichothecene mycotoxins produced by Stachybotrys chartarum (10,13,16). In addition, Aspergillus versicolor is presumed to be of concern, because it belongs to the most frequently occurring species found in damp indoor environments (19,27) and is known to be the major producer of the hepatotoxic and carcinogenic mycotoxin sterigmatocystin (2, 5). In a study of water-damaged building materials, analyses of wallpaper and fiberglass wallpaper naturally contaminated with A. versicolor revealed sterigmatocystin and 5-methoxysterigmatocystin (30). Tuomi and coworkers found sterigmatocystin in 24% of bulk samples of moldy interior finishes from Finnish buildings with moisture problems, ranging from 0.2 to 1,000 ng per g (fresh weight) of sample (42).Sterigmatocyst...
The lantibiotic (i.e., lanthionine-containing antibiotic) mersacidin is an antimicrobial peptide of 20 amino acids which is produced by Bacillus sp. strain HIL Y-85,54728. Mersacidin inhibits bacterial cell wall biosynthesis by binding to the precursor molecule lipid II. The structural gene of mersacidin (mrsA) and the genes for the enzymes of the biosynthesis pathway, dedicated transporters, producer self-protection proteins, and regulatory factors are organized in a biosynthetic gene cluster. For site-directed mutagenesis of lantibiotics, the engineered genes must be expressed in an expression system that contains all of the factors necessary for biosynthesis, export, and producer self-protection. In order to express engineered mersacidin peptides, a system in which the engineered gene replaces the wild-type gene on the chromosome was constructed. To test the expression system, three mutants were constructed. In S16I mersacidin, the didehydroalanine residue (Dha) at position 16 was replaced with the Ile residue found in the closely related lantibiotic actagardine. S16I mersacidin was produced only in small amounts. The purified peptide had markedly reduced antimicrobial activity, indicating an essential role for Dha16 in biosynthesis and biological activity of mersacidin. Similarly, Glu17, which is thought to be an essential structure in mersacidin, was exchanged for alanine. E17A mersacidin was obtained in good yields but also showed markedly reduced activity, thus confirming the importance of the carboxylic acid function at position 17 in the biological activity of mersacidin. Finally, the exchange of an aromatic for an aliphatic hydrophobic residue at position 3 resulted in the mutant peptide F3L mersacidin; this peptide showed only moderately reduced activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.