Topological properties lie at the heart of many fascinating phenomena in solid state systems such as quantum Hall systems or Chern insulators. The topology can be captured by the distribution of Berry curvature, which describes the geometry of the eigenstates across the Brillouin zone. Employing fermionic ultracold atoms in a hexagonal optical lattice, we generate topological bands using resonant driving and show a full momentumresolved measurement of the ensuing Berry curvature. Our results pave the way to explore intriguing phases of matter with interactions in topological band structures.Topology is a fundamental concept for our understanding of many fascinating systems that have recently attracted a lot of interest, such as topological superconductors or topological insulators, which conduct only at their edges [1]. The topology of the bulk band is quantified by the Berry curvature [2] and the integral over the full Brillouin zone is a topological invariant, called the Chern number. According to the bulk boundary correspondence principle, the Chern number determines the number of chiral conducting edge states [1]. While in a variety of lattice systems ranging from solid state systems to photonic waveguides and even coupled mechanical pendula, edge states have been directly observed [3][4][5][6][7], the underlying Berry curvature as the central measure of topology is not easily accessible. In recent years, ultracold atoms in optical lattices have emerged as a platform to study topological band structures [8,9] and these systems have seen considerable experimental and theoretical progress. Whereas in condensed matter systems, topological properties arise due to external magnetic fields or intrinsic spin-orbit coupling of the material, they can in cold atom systems be engineered by periodic driving analogous to illuminated graphene [10]. Interestingly, the resulting Floquet system can have totally new topological properties [11]. The driving can, for example, be realized by lattice shaking [12][13][14][15][16] or Raman coupling [17][18][19] with high precision control in a large parameter space. In particular, the driving can break time-reversal symmetry [13,14,16] and thus allows for engineering non-trivial topology [16,18]. In quantum gas experiments, topolog- ical properties have been probed via the Hall drift of accelerated wave packets [16,18], via an interferometer in momentum space [20,21]
Originally, the Hubbard model was derived for describing the behavior of strongly correlated electrons in solids. However, for over a decade now, variations of it have also routinely been implemented with ultracold atoms in optical lattices, allowing their study in a clean, essentially defect-free environment. Here, we review some of the vast literature on this subject, with a focus on more recent non-standard forms of the Hubbard model. After giving an introduction to standard (fermionic and bosonic) Hubbard models, we discuss briefly common models for mixtures, as well as the so-called extended Bose-Hubbard models, that include interactions between neighboring sites, next-neighbor sites, and so on. The main part of the review discusses the importance of additional terms appearing when refining the tight-binding approximation for the original physical Hamiltonian. Even when restricting the models to the lowest Bloch band is justified, the standard approach neglects the density-induced tunneling (which has the same origin as the usual on-site interaction). The importance of these contributions is discussed for both contact and dipolar interactions. For sufficiently strong interactions, the effects related to higher Bloch bands also become important even for deep optical lattices. Different approaches that aim at incorporating these effects, mainly via dressing the basis, Wannier functions with interactions, leading to effective, density-dependent Hubbard-type models, are reviewed. We discuss also examples of Hubbard-like models that explicitly involve higher p orbitals, as well as models that dynamically couple spin and orbital degrees of freedom. Finally, we review mean-field nonlinear Schrödinger models of the Salerno type that share with the non-standard Hubbard models nonlinear coupling between the adjacent sites. In that part, discrete solitons are the main subject of consideration. We conclude by listing some open problems, to be addressed in the future.
Recently, the identification of non-equilibrium signatures of topology in the dynamics of such systems has attracted particular attention [3][4][5][6] . Here, we experimentally study the dynamical evolution of the wavefunction using time-and momentum-resolved full state tomography for spin-polarized fermionic atoms in driven optical lattices 7 . We observe the appearance, movement and annihilation of dynamical vortices in momentum space after sudden quenches close to the topological phase transition. These dynamical vortices can be interpreted as dynamical Fisher zeros of the Loschmidt amplitude 8 , which signal a so-called dynamical phase transition 9,10 . Our results pave the way to a deeper understanding of the connection between topological phases and non-equilibrium dynamics.The discovery of topological matter has revolutionized our understanding of band theory: not only are the dispersions of the energy bands important, but so is the geometry of the corresponding eigenstates 1 . The non-local nature of the topological invariants characterizing such phases goes beyond the Landau paradigm of local order parameters and leads to topological protection, for example, against disorder. Ultracold quantum gases in optical lattices allow for controlled studies of archetypal topological models [11][12][13][14] . In addition, compared with, for example condensed-matter systems, they also allow for detailed studies of the relation between dynamics and topology as the timescales are experimentally easier to access. Dynamical studies of driven systems have recently attracted attention in terms of their high T c superconductivity 15 . A particular challenge is to identify non-equilibrium signatures of topology in the dynamics of highly excited states 3,4,16 . Here, we observe the time evolution of the wavefunction after a sudden quench in a Haldanelike model and find dynamical vortices as a signature of the topological nature of the underlying ground state.In the experiments described here, the state tomography method allows mapping of the full quantum-mechanical wavefunction of non-interacting ultracold fermionic quantum gases in an optical lattice for any time after a sudden quench of the system close to or into a Chern insulating phase. As a key result, we identify in an intense series of measurements the appearance, movement and annihilation In the initial system, tunnelling J AB between the A and B sites is suppressed by a large energy offset. In the final Floquet system, tunnelling is re-established by means of near-resonant driving. b, At each momentum, the Hamiltonian describes the coupling between the states of the A and B sublattices, and can be visualized on a Bloch sphere. In the initial system, the Hamiltonian for all momenta points to the north pole, whereas in the Floquet system, the Hamiltonian covers a large surface of the Bloch sphere. c, Phase diagram for the Floquet Hamiltonian as a function of shaking amplitude and detuning with respect to the sublattice offset for the case of circular lattice shaking...
Interactions lie at the heart of correlated many-body quantum phases. Typically, the interactions between microscopic particles are described as two-body interactions. However, it has been shown that higher-order multi-body interactions could give rise to novel quantum phases with intriguing properties. So far, multi-body interactions have been observed as inelastic loss resonances in three- and four-body recombinations of atom-atom and atom-molecule collisions. Here we demonstrate the presence of effective multi-body interactions in a system of ultracold bosonic atoms in a three-dimensional optical lattice, emerging through virtual transitions of particles from the lowest energy band to higher energy bands. We observe such interactions up to the six-body case in time-resolved traces of quantum phase revivals, using an atom interferometric technique that allows us to precisely measure the absolute energies of atom number states at a lattice site. In addition, we show that the spectral content of these time traces can reveal the atom number statistics at a lattice site, similar to foundational experiments in cavity quantum electrodynamics that yield the statistics of a cavity photon field. Our precision measurement of multi-body interaction energies provides crucial input for the comparison of optical-lattice quantum simulators with many-body quantum theory.
Orbital physics plays a significant role for a vast number of important phenomena in complex condensed matter systems such as high-Tc superconductivity and unconventional magnetism. In contrast, phenomena in superfluids -especially in ultracold quantum gases -are commonly well described by the lowest orbital and a real order parameter 1 . Here, we report on the observation of a novel multi-orbital superfluid phase with a complex order parameter in binary spin mixtures. In this unconventional superfluid, the local phase angle of the complex order parameter is continuously twisted between neighboring lattice sites. The nature of this twisted superfluid quantum phase is an interaction-induced admixture of the p-orbital favored by the graphene-like band structure of the hexagonal optical lattice used in the experiment. We observe a second-order quantum phase transition between the normal superfluid (NSF) and the twisted superfluid phase (TSF) which is accompanied by a symmetry breaking in momentum space. The experimental results are consistent with calculated phase diagrams and reveal fundamentally new aspects of orbital superfluidity in quantum gas mixtures. Our studies might bridge the gap between conventional superfluidity and complex phenomena of orbital physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.