People can learn about the probabilistic consequences of their actions in two ways: One is by consulting descriptions of an action's consequences and probabilities (e.g., reading up on a medication's side effects). The other is by personally experiencing the probabilistic consequences of an action (e.g., beta testing software). In principle, people taking each route can reach analogous states of knowledge and consequently make analogous decisions. In the last dozen years, however, research has demonstrated systematic discrepancies between description- and experienced-based choices. This description-experience gap has been attributed to factors including reliance on a small set of experience, the impact of recency, and different weighting of probability information in the two decision types. In this meta-analysis focusing on studies using the sampling paradigm of decisions from experience, we evaluated these and other determinants of the decision-experience gap by reference to more than 70,000 choices made by more than 6,000 participants. We found, first, a robust description-experience gap but also a key moderator, namely, problem structure. Second, the largest determinant of the gap was reliance on small samples and the associated sampling error: free to terminate search, individuals explored too little to experience all possible outcomes. Third, the gap persisted when sampling error was basically eliminated, suggesting other determinants. Fourth, the occurrence of recency was contingent on decision makers' autonomy to terminate search, consistent with the notion of optional stopping. Finally, we found indications of different probability weighting in decisions from experience versus decisions from description when the problem structure involved a risky and a safe option. (PsycINFO Database Record
Network science provides a set of quantitative methods to investigate complex systems, including human cognition. Although cognitive theories in different domains are strongly based on a network perspective, the application of network science methodologies to quantitatively study cognition has so far been limited in scope. This review demonstrates how network science approaches have been applied to the study of human cognition and how network science can uniquely address and provide novel insight on important questions related to the complexity of cognitive systems and the processes that occur within those systems. Drawing on the literature in cognitive network science, with a focus on semantic and lexical networks, we argue three key points. (i) Network science provides a powerful quantitative approach to represent cognitive systems. (ii) The network science approach enables cognitive scientists to achieve a deeper understanding of human cognition by capturing how the structure, i.e., the underlying network, and processes operating on a network structure interact to produce behavioral phenomena. (iii) Network science provides a quantitative framework to model the dynamics of cognitive systems, operationalized as structural changes in cognitive systems on different timescales and resolutions. Finally, we highlight key milestones that the field of cognitive network science needs to achieve as it matures in order to provide continued insights into the nature of cognitive structures and processes.
The field of cognitive aging has seen considerable advances in describing the linguistic and semantic changes that happen during the adult life span to uncover the structure of the mental lexicon (i.e., the mental repository of lexical and conceptual representations). Nevertheless, there is still debate concerning the sources of these changes, including the role of environmental exposure and several cognitive mechanisms associated with learning, representation, and retrieval of information. We review the current status of research in this field and outline a framework that promises to assess the contribution of both ecological and psychological aspects to the aging lexicon. Cognitive Aging and the Mental Lexicon There is consensus in the cognitive sciences that human development extends well beyond childhood and adolescence, and there has been remarkable empirical progress in the field of cognitive aging in past decades [1]. Nevertheless, the role of environmental and cognitive factors in age-related changes in the structure and processing of lexical and semantic representations (see Glossary) is still under debate. For example, age-related memory decline is commonly attributed to a decline in cognitive abilities [2,3], yet some researchers have proposed that massive exposure to language over the course of one's life leads to knowledge gains that may contribute to, if not fully account for, age-related memory deficits [4-6]. We argue that to resolve such debates we require an interdisciplinary approach that captures how information exposure across adulthood may change the way that we acquire, represent, and recall information. We summarize recent developments in the field (Figure 1, Table 1) and propose a conceptual framework (Figure 2, Key Figure) and associated research agenda that argues for combining ecological analyses, formal modeling, and large-scale empirical studies to shed light on the contents, structure, and neural basis of the aging mental lexicon in both health and disease. Mental Lexicon: Aging and Cognitive Performance The mental lexicon can be thought of as a repository of lexical and conceptual representations, composed of organized networks of semantic, phonological, orthographic, morphological, and other types of information [7]. The cognitive sciences have provided considerable knowledge about the computational (Box 1; [8-11]) and neural basis (Box 2; [12,13]) of lexical and semantic cognition, and there has been considerable interest in how such aspects of cognition change across adulthood and aging [14,15]. Past work on the aging lexicon emphasized the amount of information acquired across the life span (e.g., vocabulary gains across adulthood; [15]); however, new evaluations using graphbased approaches suggest that both quantity and structural aspects of representations differ between individuals [16] and change across the life span [17-19]. Such insights were gathered, for example, from a large-scale analysis of free association data from thousands of individuals [17], ranging from 10 to ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.