Forecasting thermal load is a key component for the majority of optimization solutions for controlling district heating and cooling systems. Recent studies have analysed the results of a number of data-driven methods applied to thermal load forecasting, this paper presents the results of combining a collection of these individual methods in an expert system. The expert system will combine multiple thermal load forecasts in a way that it always tracks the best expert in the system. This solution is tested and validated using a thermal load dataset of 27 months obtained from 10 residential buildings located in Rottne, Sweden together with outdoor temperature information received from a weather forecast service. The expert system is composed of the following data-driven methods: linear regression, extremely randomized trees regression, feed-forward neural network and support vector machine. The results of the proposed solution are compared with the results of the individual methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.