Key Points• NOX-A12, a structured mirrorimage RNA oligonucleotide that neutralizes CXCL12, interferes with CLL migration and drug resistance.• NOX-A12 inhibits chemotaxis and sensitizes CLL cells toward cytotoxic drugs, providing a rationale for NOX-A12 combination therapy.The CXC chemokine ligand (CXCL12, or stromal cell-derived factor-1 as previously known) plays a critical role for homing and retention of chronic lymphocytic leukemia (CLL) cells in tissues such as the bone marrow (BM). In tissues, stromal cells constitutively secrete and present CXCL12 via cell-surface-bound glycosaminoglycans (GAGs), thereby attracting CLL cells and protecting them from cytotoxic drugs, a mechanism that may account for residual disease after conventional CLL therapy. NOX-A12, an RNA oligonucleotide in L-configuration (Spiegelmer) that binds and neutralizes CXCL12, was developed for interference with CXCL12 in the tumor microenvironment and for cell mobilization. Here, we examined effects of NOX-A12 on CLL cell migration and drug sensitivity. We found that NOX-A12 effectively inhibited CXCL12-induced chemotaxis of CLL cells. In contrast, NOX-A12 increased CLL migration underneath a confluent layer of BM stromal cells (BMSCs) due to interference with the CXCL12 gradient established by BMSCs. In particular, NOX-A12 competes with GAGs such as heparin for CXCL12 binding, leading to the release of CXCL12 from stromal cell-surface-bound GAGs, and thereby to neutralization of the chemokine. Furthermore, NOX-A12 sensitizes CLL cells toward bendamustine and fludarabine in BMSC cocultures. These data demonstrate that NOX-A12 effectively interferes with CLL cell migration and BMSC-mediated drug resistance, and establishes a rationale for clinical development of NOX-A12 in combination with conventional agents in CLL. (Blood.
Fibroblast activation protein (FAP) is a promising target for diagnosis and therapy of numerous malignant tumors. FAP-2286 is the conjugate of a FAP-binding peptide, which can be labeled with radionuclides for theranostic applications. We present the first-in-human results using 177 Lu-FAP-2286 for peptide-targeted radionuclide therapy (PTRT). Methods: PTRT using 177 Lu-FAP-2286 was performed in 11 patients with advanced adenocarcinomas of pancreas, breast, rectum and ovary after prior confirmation of uptake on 68 Ga-FAP-2286/-FAPI-04-PET/CT.Results: Administration of 177 Lu-FAP-2286 (5.8 ± 2.0 GBq; range, 2.4-9.9 GBq) was well tolerated, with no adverse symptoms or clinically detectable pharmacologic effects being noticed or reported in any of the patients. The whole-body effective doses were 0.07 ± 0.02 Gy/GBq (range 0.04 -0.1). The mean absorbed doses for kidneys and red marrow were 1.0 ± 0.6 Gy/GBq (range 0.4 -2.0) and 0.05 ± 0.02 Gy/GBq (range 0.03 -0.09), respectively. Significant uptake and long tumor retention of 177 Lu-FAP-2286 resulted in high absorbed tumor doses, e.g., 3.0 ± 2.7 Gy/GBq (range 0.5 -10.6) in bone metastases. No grade (G) 4 adverse events were observed. G3 events occurred in 3 patients -1 pancytopenia, 1 leukocytopenia and 1 pain flareup; 3 patients reported pain-response. Conclusions: 177 Lu-FAP-2286 PTRT, applied in a broad spectrum of cancers, was relatively well-tolerated with acceptable side effects and demonstrated long retention of the radiopeptide. Prospective clinical studies are warranted.
SUMMARY Bone marrow (BM) metastasis remains one of the main causes of death associated with solid tumors as well as with Multiple Myeloma (MM). Targeting the BM niche to prevent or modulate metastasis has not been successful to date. Here we show that stromal cell derived factor-1 (SDF-1/CXCL12) is highly expressed in active MM, as well as in BM sites of tumor metastasis, and report on the discovery of the high affinity anti-SDF-1 PEGylated mirror-image l-oligonucleotide (olaptesed-pegol). In vivo confocal imaging showed that SDF-1 levels are increased within MM cell-colonized BM areas. Using in vivo murine and xenograft mouse models, we document that in vivo SDF-1 neutralization within BM niches leads to a microenvironment that is less receptive for MM cells and reduces MM cell homing and growth, thereby inhibiting MM disease progression. Targeting of SDF-1 represents a valid strategy for preventing or disrupting colonization of the BM by MM cells.
Key Points The hepcidin inhibitor NOX-H94, a structured mirror-image RNA oligonucleotide, and its in vitro and in vivo characterization are described. First published hepcidin inhibitor that entered clinical trials for the treatment of anemia due to functional iron deficiency.
Immune checkpoint inhibitors promote T cell-mediated killing of cancer cells; however, only a subset of patients benefit from the treatment. A possible reason for this limitation may be that the tumor microenvironment (TME) is immune privileged, which may exclude cytotoxic T cells from the vicinity of cancer cells. The chemokine CXCL12 is key to the TME-driven immune suppression. In this study, we investigated the potential of CXCL12 inhibition by use of the clinical-stage L-RNA-aptamer NOX-A12 (olaptesed pegol) to increase the number of tumor-infiltrating lymphocytes. We used heterotypic tumor-stroma spheroids that mimic a solid tumor with a CXCL12-abundant TME. NOX-A12 enhanced the infiltration of T and NK cells in a dose-dependent manner. NOX-A12 and PD-1 checkpoint inhibition synergistically activated T cells in the spheroids, indicating that the agents complement each other. The findings were validated in vivo in a syngeneic murine model of colorectal cancer in which the addition of NOX-A12 improved anti-PD-1 therapy. Taken together, our work shows that CXCL12 inhibition can break the immuneprivileged status of the TME by paving the way for immune effector cells to enter into the tumor, thereby broadening the applicability of checkpoint inhibitors in cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.