[reaction: see text] The biocatalytic oxidation of o-methoxyphenolic compounds led to a variety of oligophenols (dimers to pentamers) and some of their oxidation products. The reaction was carried out in an aqueous medium at room temperature with hydrogen peroxide as the terminal oxidant in a facile and green route to potentially bioactive compounds. Detailed structural information on the products of peroxidase-catalyzed oxidation of o-methoxyphenols is presented for the first time.
Cancer cells are defined by their ability to divide uncontrollably
and metastasize to secondary sites in the body. Consequently,
tumor cell migration represents a promising target for anticancer
drug development. Using our high-throughput cell migration assay,
we have screened several classes of compounds for noncytotoxic
tumor cell migration inhibiting activity. One such compound,
apocynin (4-acetovanillone), is oxidized by peroxidases to yield a
variety of oligophenolic and quinone-type compounds that are
recognized inhibitors of NADPH oxidase and may be inhibitors of
the small G protein Rac1 that controls cell migration. We report
here that while apocynin itself is not effective, apocynin
derivatives inhibit migration of the breast cancer cell line
MDA-MB-435 at subtoxic concentrations; the migration of
nonmalignant MCF10A breast cells is unaffected. These compounds
also cause a significant rearrangement of the actin cytoskeleton,
cell rounding, and decreased levels of active Rac1 and its related
G protein Cdc42. These results may suggest a promising new route
to the development of novel anticancer therapeutics.
Oxidative biocatalytic reactions were performed on solid-supported substrates, thus expanding the repertoire of biotransformations that can be carried out on the solid phase. Various phenylacetic and benzoic acid analogs were attached to controlled pore glass beads via an enzyme-cleavable linker. Reactions catalyzed by peroxidases (soybean and chloro), tyrosinase, and alcohol oxidase/dehydrogenase gave a range of products, including oligophenols, halogenated aromatics, catechols, and aryl aldehydes. The resulting products were recovered following cleavage from the beads using α-chymotrypsin to selectively hydrolyze a chemically non-labile amide linkage. Controlled pore glass (CPG) modified with a polyethylene glycol (PEG) linker afforded substantially higher product yields than non-PEGylated CPG or non-swellable polymeric resins. This work represents the first attempt to combine solid-phase oxidative biotransformations with subsequent protease-catalyzed cleavage, and serves to further expand the use of biocatalysis in synthetic and medicinal chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.