Under the conditions of in vitro screening, 14 of the 17 compounds did not exhibit measuarable interference. Galactose exhibited the highest interference during screening, but did not substantially interfere with CGMs under the conditions of in vitro testing at physiologically relevant concentrations. Enzyme kinetic analysis conducted with galactose supported the notion that (1) the reactivity of GOx enzyme toward nonglucose sugars and (2) the presence of enzymatic impurities (such as galactose oxidase) are two potential sources for sugar interference with GOx glucose sensors, and thus, should be considered during device development.
We report here on differential linear scan voltammetry, DLSV, that combines the working principles of linear scan voltammetry, LSV, and the numerous existing pulsed voltammetry techniques. DLSV preserves the information from continuous interrogation in voltage and high accuracy that LSV provides about electrochemical processes, and the much better sensitivity of differential pulsed techniques. DLSV also minimizes the background current compared to both LSV and pulsed voltammetry. An early version of DLSV, derivative stationary electrode polarography, DSEP, had been proposed in the 1960s but soon abandoned in favor of the emerging differential pulsed techniques. Relative to DSEP, DLSV takes advantage of the flexibility of discrete smoothing differentiation that was not available to early investigators. Also, DSEP had been explored in pure solutions and with reversible electrochemical reactions. DLSV is tested in this work in more challenging experimental contexts: the measurement of oxygen with a carbon fiber microelectrode in buffer, and with a gold microdisc electrode exposed to a live biological preparation. This work compares the analytical performance of DLSV and square wave voltammetry, the most popular pulsed voltammetry technique.
Both potentiometric and voltammetric measurements report on the concentration of the analyte in the closest layer of the sample solution that is unperturbed by the measurement. Besides this local concentration, the solution composition within the thin boundary layer adjacent to the electrode|solution interface is influenced also by local mass transport and other electrochemical processes necessary for signal transduction. This local perturbation of concentrations is typically corrected for by calibration so that the ultimate output of the measurement is the local concentration, at a distance of a few micrometers to about 100 microm from the electrode surface. In contrast to many optical techniques, the electrochemical approach is therefore only capable of measuring local concentrations but cannot be used to assess three-dimensional (3D)-averaged bulk concentrations of inhomogeneous samples. This may pose a problem in very small samples where homogenization by stirring is difficult. We present here the concept of spatially averaging electrodes that can, due to their special design, report 3D spatially averaged bulk concentration of inhomogeneous samples that have some type of symmetry. Within a given type of symmetry an infinite variation of concentration distribution may exist. We illustrate the concept of spatially averaging electrodes with results obtained in microliter-sized hemispherical samples with a source in the center of the drop.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.