A field experiment was conducted in a free-air CO2 enrichment (FACE) facility to investigate the effect of elevated atmospheric CO2 on growth and physiology of green gram (Vigna radiata (L.) R.Wilczek) and associated weed species (Euphorbia geniculata Ortega and Commelina diffusa Burm.f.). Physiological and reproductive behaviour and interaction of the crop and two weed species under elevated CO2 was also studied. Plants were grown under ambient (390 ± 5 ppmv) and elevated (550 ± 50 ppmv) CO2. The results showed that growth, photosynthesis and carbonic anhydrase activity increased in all the test species. Stomatal conductance and transpiration decreased in V. radiata (5.1% and 30.5%, respectively) and C. diffusa (19% and 13.7%) but increased in E. geniculata (6.5% and 27.6%), suggesting a unique adaptive potential of E. geniculata at elevated CO2. Higher accumulation of reactive oxygen species (hydrogen peroxide and superoxide) was noticed at elevated CO2 in V. radiata than in E. geniculata and C. diffusa. Potential of E. geniculata to maintain redox homeostasis in its original state may provide an advantage over two other species in adaptation to climate change. Isoenzyme patterns of superoxide dismutase and stronger activity of antioxidant enzymes suggest species-specific differential regulation and induction of new isoforms under elevated CO2. Enrichment of atmospheric CO2 at a competitive density of weeds lowered the yield (12.12%) and quality of green gram seed, with diminished protein content (16.14% at ambient CO2 to 15.42% at elevated CO2) and enhanced carbohydrate content (3.11%). From the study, it may be concluded that a rise in atmospheric CO2 concentration affects plant performance in a species-specific manner. Among the three species, E. geniculata emerged as most responsive to elevated CO2, showing higher transpiration and stomatal conductance and a stronger antioxidant defence system in a higher CO2 atmosphere. At elevated CO2, weed–crop interaction altered in favour of weeds leading to considerable yield loss of green gram seed.
This study was aimed to determine the uptake and accumulation potential of a weed (Abutilon indicum L.) for phytoremediation of soil contaminated with cadmium. Plants were grown in soil spiked with 0, 2.5, 5, 10, 15, 20, 25 mg/kg Cd, individually. Plants sample (root and shoot) were analyzed for Cd content at 30, 60, and 90 days and accumulation trends were characterized. A steady increase in Cd accumulation with increasing metal concentration and exposure period was observed for all treatments. Accumulation of Cd in roots was found to be 4.3-7.7 times higher than that of shoots. Statistically significant difference (P ≤ 0.001) in mean metal content in root and shoot at successive days of study was recorded. Effect of Cd on growth and physiology was also evaluated. At higher Cd levels, root and shoot length and biomass of test plant were reduced significantly. Although, growth was delayed initially, it was comparable to control at the end of the study. Chlorophyll and proline content declined with the increase in Cd concentration at 30 and 60 days after treatment. However, at 90 days, values were more or less comparable to the control values showing the adaptability of test plant in Cd contamination. Considering the accumulation ability, BCF >1 (bioconcentration factor) and TF <1 (translocation factor) established A. indicum as a potential candidate plant for phytoremediation. Hence, phytoremediation employing indigenous weed species like A. indicum can be an ecologically viable option for sustainable and cost-effective management of heavy metal-contaminated soils.
Biological invasion is defined as the introduction (intentional or non-intentional), successful establishment, and potential spread of species outside their native range of habitat, and recognized as a threat to the economy, environment and biodiversity globally. Together, such species are regarded as 'invasive alien species'. Liberalization of global trade, increase in transport, travel and tourism are the root causes of invasions by alien species that pose a serious threat to biodiversity of different ecosystems, food security, human and animal health. In the recent past, the implications of climate change for biodiversity have been widely recognized, however, the ill effects of invasive alien species on global biodiversity have received little attention. Climate change is itself a major factor responsible for the complete shift of native flora diversity, which may further complicate the puzzle of biological invasions. It has been generally visualized that predicted changes in climatic factors will also modify interaction scenarios between crops and weeds that will make weed management more difficult. And, if this happens, invasive alien weed species will dominate the other flora due to their superior adaptability to new environments. An attempt has been made to review the available literature on invasive alien weed species and their significant impact on different ecosystems, including forestry, agro-forestry, cropped and non-cropped lands in India and elsewhere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.