Background Prostate cancer development involves various mechanisms, which are poorly understood but pointing to epithelial mesenchymal transition (EMT) as the key mechanism in progression to metastatic disease. ABI1, a member of WAVE complex and actin cytoskeleton regulator and adaptor protein, acts as tumor suppressor in prostate cancer but the role of ABI1 in EMT is not clear. Methods To investigate the molecular mechanism by which loss of ABI1 contributes to tumor progression, we disrupted the ABI1 gene in the benign prostate epithelial RWPE-1 cell line and determined its phenotype. Levels of ABI1 expression in prostate organoid tumor cell lines was evaluated by Western blotting and RNA sequencing. ABI1 expression and its association with prostate tumor grade was evaluated in a TMA cohort of 505 patients and metastatic cell lines. Results Low ABI1 expression is associated with biochemical recurrence, metastasis and death (p = 0.038). Moreover, ABI1 expression was significantly decreased in Gleason pattern 5 vs. pattern 4 (p = 0.0025) and 3 (p = 0.0012), indicating an association between low ABI1 expression and highly invasive prostate tumors. Disruption of ABI1 gene in RWPE-1 cell line resulted in gain of an invasive phenotype, which was characterized by a loss of cell-cell adhesion markers and increased migratory ability of RWPE-1 spheroids. Through RNA sequencing and protein expression analysis, we discovered that ABI1 loss leads to activation of non-canonical WNT signaling and EMT pathways, which are rescued by re-expression of ABI1. Furthermore, an increase in STAT3 phosphorylation upon ABI1 inactivation and the evidence of a high-affinity interaction between the FYN SH2 domain and ABI1 pY421 support a model in which ABI1 acts as a gatekeeper of non-canonical WNT-EMT pathway activation downstream of the FZD2 receptor. Conclusions ABI1 controls prostate tumor progression and epithelial plasticity through regulation of EMT-WNT pathway. Here we discovered that ABI1 inhibits EMT through suppressing FYN-STAT3 activation downstream from non-canonical WNT signaling thus providing a novel mechanism of prostate tumor suppression.
280 Background: Prostate cancer is characterized by heterogeneity of mechanisms which are poorly understood but pointing to epithelial plasticity as the key mechanism in progression to metastatic disease. ABI1, a member of WAVE complex and actin cytoskeleton regulator and adaptor protein, is proposed to act as tumor suppressor in prostate cancer, but the mechanism of tumor progression due to Abi1 loss is not clear. Methods: To address Abi1’s role in prostate cancer we used CRISPR-based gene editing and retroviral expression to manipulate Abi1 levels in prostate cancer cell lines. Levels of Abi1 expression in prostate organoid tumor cell lines were evaluated by Western blotting and/or RNA sequencing. Association of Abi1 loss with tumor grade was evaluated by immunohistochemistry. Results: Abi1 expression is downregulated in tumor organoid cell lines from metastatic bone and lymph node biopsies. Moreover, low Abi1 expression is associated with high-grade prostate tumors (GG3 or higher, p < 0.001). Disruption of Abi1 gene in a benign prostate epithelial cell line RWPE-1 resulted in a gain of invasive phenotype, which is characterized by loss of cell-cell adhesion markers and increased migratory ability of RWPE-1 Abi1 KO spheroids. Through RNA sequencing and protein expression analysis we discovered that Abi1 loss leads to activation of non-canonical WNT signaling and EMT pathways, which are rescued by re-expression of Abi1. Furthermore, increase in STAT3 phosphorylation upon Abi1 inactivation and evidence for high affinity interaction of FYN-SH2 domain with Abi1 pY421 support the model that Abi1 acts as a gatekeeper of the non-canonical WNT-EMT pathway activation downstream from FZD2 receptor. The gene expression profile of Abi1-EMT-WNT pathway overlaps with the reported gene signature of high-risk prostate tumors. Conclusions: Abi1 contributes to prostate cancer progression and epithelial plasticity through regulation of EMT-WNT pathways. Understanding of Abi1’s role may provide more mechanistic understanding of prostate cancer tumor progression.
Genetically engineered mouse models (GEMMs) serve as effective pre-clinical models for investigating most types of human cancers, including prostate cancer (PCa). Understanding the anatomy and histology of the mouse prostate is important for the efficient use and proper characterization of such animal models. The mouse prostate has four distinct pairs of lobes, each with their own characteristics. This article demonstrates the proper method of dissection and identification of mouse prostate lobes for disease analysis. Post-dissection, the prostate cells can be further cultured in vitro for mechanistic understanding. Since mouse prostate primary cells tend to lose their normal characteristics when cultured in vitro, we outline here a method for isolating the cells and growing them as 3D spheroid cultures, which is effective for preserving the physiological characteristics of the cells. These 3D cultures can be used for analyzing cell morphology and behavior in near-physiological conditions, investigating altered levels and localizations of key proteins and pathways involved in the development and progression of a disease, and looking at responses to drug treatments.
Nearly one third of men will incur biochemical recurrence after treatment for localized prostate cancer. Androgen deprivation therapy (ADT) is the therapeutic mainstay, however almost all patients will eventually transition to a castrate resistant state (castrate resistant prostate cancer, CRPC). Subjects with CRPC generally develop symptomatic metastatic disease (mCRPC) and incur mortality several years later. Prior to metastatic disease, men acquire non-metastatic CRPC (nmCRPC) which lends the unique opportunity for intervention to delay disease progression and symptoms. This review addresses current therapies for nmCRPC, as well as novel therapeutics and pathway strategies targeting men with nmCRPC.
Nearly one third of men will incur biochemical recurrence after treatment for localized prostate cancer. Androgen deprivation therapy (ADT) is the therapeutic mainstay; however, some patients will transition to a castrate resistant state (castrate resistant prostate cancer, CRPC). Subjects with CRPC may develop symptomatic metastatic disease (mCRPC) and incur mortality several years later. Prior to metastatic disease, however, men acquire non-metastatic CRPC (nmCRPC) which lends the unique opportunity for intervention to delay disease progression and symptoms. This review addresses current therapies for nmCRPC, as well as novel therapeutics and pathway strategies targeting men with nmCRPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.