In the current development and design of sports rehabilitation equipment or biomimetic prostheses, in addition to pay attention to the development and design of the structure, the more core is how to realize the accurate and effective control of the rehabilitation equipment or intelligent prosthesis, and the current research is based on data process and pattern recognition. This paper designs 9 kinds of actions that can react effectively to the function of the hand and extracts the original EMG signals, which are based on the sEMG of the forearm muscles of human hand movement, and uses the 20 order comb filter and wavelet threshold to preprocess the signal, and uses the root mean square, wavelength and nonlinear characteristics sample entropy in time domain as three eigenvalues to construct the input feature vectors of the subsequent action classifier. Finally, the recognition of the hand movements is realized successfully through GRNN and SVM. The recognition rate is 98.64% in SVM classifier and 96.27% in GRNN classifier. Experimental results show that the SVM classifier is better than the GRNN classifier.
For the problem of surface electromyography (sEMG) gesture recognition, considering the fact that the traditional machine learning model is susceptible to the sEMG feature extraction method, it is difficult to distinguish the subtle differences between similar gestures. The NinaPro DB1 dataset is used as the research object, and the sEMG feature image and the Convolutional Neural Network (CNN) are combined to recognize 52 gesture movements. The CNN model effectively solves the limitations of traditional machine learning in sEMG gesture recognition, and combines 1-dim convolution kernel to extract deep abstract features to improve the recognition effect. Finally, the simulation experiment shows that compared with the accuracy of the raw-sEMG images based on the CNN and the sEMG-feature-images based on the CNN and sEMG based on the traditional machine learning, the multi-sEMG-features image based on the CNN is the highest, which coming up to 82.54%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.