Urban intelligence is an emerging concept which guides a series of infrastructure developments in modern smart cities. Human-computer interaction (HCI) is the interface between residents and the smart cities, it plays a key role in bridging the gap in applicating information technologies in modern cities. Hand gestures have been widely acknowledged as a promising HCI method, recognition human hand gestures using surface electromyogram (sEMG) is an important research topic in the application of sEMG. However, state-of-the-art signal processing technologies are not robust in feature extraction and pattern recognition with sEMG signals, several technical problems are still yet to be solved. For example, how to maintain the availability of myoelectric control in intermittent use, since pattern recognition qualities are greatly affected by time variability, but it is unavoidable during daily use. How to ensure the reliability and effectiveness of myoelectric control system also important in developing a good human-machine interface. In this paper, linear discriminant analysis (LDA) and extreme learning machine (ELM) are implemented in hand gesture recognition system, which is able to reduce the redundant information in sEMG signals and improve recognition efficiency and accuracy. The characteristic map slope (CMS) is extracted by using the feature re-extraction method because CMS can strengthen the relationship of features cross time domain and enhance the feasibility of cross-time identification. This study is focusing on optimizing the time differences in sEMG pattern recognition, the experimental results are beneficial to reducing the time differences in gesture recognition based on sEMG. The recognition framework proposed in this paper can enhance the generalization ability of HCI in the long term use and it also simplifies the data collection stage before training the device ready for daily use, which is of great significance to improve the time generalization performance of an HCI system.
A convenient and effective binocular vision system is set up. Gesture information can be accurately extract from the complex environment with the system. The template calibration method is used to calibrate the binocular camera and the parameters of the camera are accurately obtained. In the phase of stereo matching, the BM algorithm is used to quickly and accurately match the images of the left and right cameras to get the parallax of the measured gesture. Combined with triangulation principle, resulting in a more dense depth map. Finally, the depth information is remapped to the original color image to realize three-dimensional reconstruction and three-dimensional cloud image generation. According to the cloud image information, it can be judged that the binocular vision system can effectively segment the gesture from the complex background.
The brain is the largest and most complex structure in the central nervous system. It dominates all activities in the body, and the lesions in the human body are also reflected in the brain signal. In this paper, the image method is used to assist the brain signal to detect the human lesion. Due to the particularity of medical images, there is no common segmentation method for any medical image, and there is no objective standard to judge whether the segmentation is effective. Medical image segmentation technology is still a bottleneck restricting the development and the application of other related technologies in medical image processing. Based on the above reasons, this paper proposes an improved region growing algorithm based on the fuzzy theory and region growing algorithm. The algorithm is used to segment the medical images of the liver and chest X-ray of different human organs. The improved algorithm uses a threshold segmentation algorithm to assist in the automatic selection of seed points and improves the region growing rules, then morphological post-processing is used to improve the segmentation effect. The experimental results show that the improved region growing algorithm has better segmentation effect under two different organs, which proves that the algorithm has certain applicability, and its accuracy and segmentation quality are better than the traditional region growing algorithm. This algorithm combines the advantages of the threshold method and traditional region growing method. It is feasible in algorithm and has certain application value. INDEX TERMS Medical image segmentation, improved region growing algorithm, applicability method, brain signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.