Infection is frequent among patients in the intensive care unit (ICU). Contemporary information about the types of infections, causative pathogens, and outcomes can aid the development of policies for prevention, diagnosis, treatment, and resource allocation and may assist in the design of interventional studies. OBJECTIVE To provide information about the prevalence and outcomes of infection and the available resources in ICUs worldwide. DESIGN, SETTING, AND PARTICIPANTS Observational 24-hour point prevalence study with longitudinal follow-up at 1150 centers in 88 countries. All adult patients (aged Ն18 years) treated at a participating ICU during a 24-hour period commencing at 08:00 on September 13, 2017, were included. The final follow-up date was November 13, 2017. EXPOSURES Infection diagnosis and receipt of antibiotics. MAIN OUTCOMES AND MEASURES Prevalence of infection and antibiotic exposure (cross-sectional design) and all-cause in-hospital mortality (longitudinal design). RESULTS Among 15 202 included patients (mean age, 61.1 years [SD, 17.3 years]; 9181 were men [60.4%]), infection data were available for 15 165 (99.8%); 8135 (54%) had suspected or proven infection, including 1760 (22%) with ICU-acquired infection. A total of 10 640 patients (70%) received at least 1 antibiotic. The proportion of patients with suspected or proven infection ranged from 43% (141/328) in Australasia to 60% (1892/3150) in Asia and the Middle East. Among the 8135 patients with suspected or proven infection, 5259 (65%) had at least 1 positive microbiological culture; gram-negative microorganisms were identified in 67% of these patients (n = 3540), gram-positive microorganisms in 37% (n = 1946), and fungal microorganisms in 16% (n = 864). The in-hospital mortality rate was 30% (2404/7936) in patients with suspected or proven infection. In a multilevel analysis, ICU-acquired infection was independently associated with higher risk of mortality compared with community-acquired infection (odds ratio [OR], 1.32 [95% CI, 1.10-1.60]; P = .003). Among antibiotic-resistant microorganisms, infection with vancomycin-resistant Enterococcus (OR, 2.41 [95% CI, 1.43-4.06]; P = .001), Klebsiella resistant to β-lactam antibiotics, including third-generation cephalosporins and carbapenems (OR, 1.29 [95% CI, 1.02-1.63]; P = .03), or carbapenem-resistant Acinetobacter species (OR, 1.40 [95% CI, 1.08-1.81]; P = .01) was independently associated with a higher risk of death vs infection with another microorganism. CONCLUSIONS AND RELEVANCE In a worldwide sample of patients admitted to ICUs in September 2017, the prevalence of suspected or proven infection was high, with a substantial risk of in-hospital mortality.
Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
One of the main causes of acute respiratory distress syndrome in coronavirus disease 2019 (COVID-19) is cytokine storm, although the exact cause is still unknown. Umbilical cord mesenchymal stromal cells (UC-MSCs) influence proinflammatory T-helper 2 (Th 2 ) cells to shift to an anti-inflammatory agent. To investigate efficacy of UC-MSC administration as adjuvant therapy in critically ill patients with COVID-19, we conducted a double-blind, multicentered, randomized controlled trial at four COVID-19 referral hospitals in Jakarta, Indonesia. This study included 40 randomly allocated critically ill patients with COVID-19; 20 patients received an intravenous infusion of 1 Â 10 6 /kg body weight UC-MSCs in 100 ml saline (0.9%) solution (SS) and 20 patients received 100 ml 0.9% SS as the control group. All patients received standard therapy. The primary outcome was measured by survival rate and/or length of ventilator usage. The secondary outcome was measured by clinical and laboratory improvement, with serious adverse events. Our study showed the survival rate in the UC-MSCs group was 2.5 times higher than that in the control group (P = .047), which is 10 patients and 4 patients in the UC-MSCs and control groups, respectively. In patients with comorbidities, UC-MSC administration increased the survival rate by 4.5 times compared with controls. The length of stay in the intensive care unit and ventilator usage were not statistically significant, and no adverse events were reported. The application of infusion UC-MSCs significantly decreased interleukin 6 in the recovered patients (P = .023). Therefore, application of intravenous UC-MSCs as adjuvant treatment for critically ill patients with COVID-19 increases the survival rate by modulating the immune system toward an antiinflammatory state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.