The nanoencapsulation of pesticides in biodegradable polymers confers several advantages to conventional agrochemicals, such as protection against losses due volatilization and degradation of the active ingredient, as well as the augment of water dispersion, allowing for their application on crops without requiring the use of organic solvents that could harm the user and the environment. This characteristics could enhance the productivity, reducing both costs and environmental pollution. In this work the propiconazole fungicide, forming part of a commercial formulation as well as in its pure state, was encapsulated using as carriers the biodegradable polymer poly lactic acid (PLA) and the biodegradable co-polymer poly (lactic-co-glicolic) acid, all with the aim of generate controlled fungicide release systems to augment the efficiency of the treatments of the Fusarium dieback disease. The most efficient system obtained presented nanospheres of 146.28 nm and an encapsulation efficiency over 42%. The antifungal activity tests showed that the use of this nanoencapsulated fungicide system enhances the growth inhibition percentage in 5%, obtaining a formulation that presents good dispersion in water without the need of organic emulsifier agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.