Epidemiology shows that red and processed meat intake is associated with an increased risk of colorectal cancer. Heme iron, heterocyclic amines, and endogenous N-nitroso compounds (NOC) are proposed to explain this effect, but their relative contribution is unknown. Our study aimed at determining, at nutritional doses, which is the main factor involved and proposing a mechanism of cancer promotion by red meat. The relative part of heme iron (1% in diet), heterocyclic amines (PhIP þ MeIQx, 50 þ 25 mg/kg in diet), and NOC (induced by NaNO 2 þ NaNO 3 ; 0.17 þ 0.23 g/L of drinking water) was determined by a factorial design and preneoplastic endpoints in chemically induced rats and validated on tumors in Min mice. The molecular mechanisms (genotoxicity, cytotoxicity) were analyzed in vitro in normal and Apc-deficient cell lines and confirmed on colon mucosa. Heme iron increased the number of preneoplastic lesions, but dietary heterocyclic amines and NOC had no effect on carcinogenesis in rats. Dietary hemoglobin increased tumor load in Min mice (control diet: 67 AE 39 mm 2 ; 2.5% hemoglobin diet: 114 AE 47 mm 2 , P ¼ 0.004). In vitro, fecal water from rats given hemoglobin was rich in aldehydes and was cytotoxic to normal cells, but not to premalignant cells. The aldehydes 4-hydroxynonenal and 4-hydroxyhexenal were more toxic to normal versus mutated cells and were only genotoxic to normal cells. Genotoxicity was also observed in colon mucosa of mice given hemoglobin. These results highlight the role of heme iron in the promotion of colon cancer by red meat and suggest that heme iron could initiate carcinogenesis through lipid peroxidation. Cancer Res; 75(5); 870-9. Ó2015 AACR.
Evidence has accumulated in recent years that suggests that nitrate from the diet, particularly vegetables, is capable of producing bioactive NO in the vasculature, following bioconversion to nitrite by oral bacteria. The aim of the present review was to consider the current body of evidence for potential beneficial effects of dietary nitrate on blood pressure and endothelial function, with emphasis on evidence from acute and chronic human intervention studies. The studies to date suggest that dietary nitrate acutely lowers blood pressure in healthy humans. An inverse relationship was seen between dose of nitrate consumed and corresponding systolic blood pressure reduction, with doses of nitrate as low as 3 mmol of nitrate reducing systolic blood pressure by 3 mmHg. Moreover, the current studies provide some promising evidence on the beneficial effects of dietary nitrate on endothelial function. In vitro studies suggest a number of potential mechanisms by which dietary nitrate and its sequential reduction to NO may reduce blood pressure and improve endothelial function, such as: acting as a substrate for endothelial NO synthase; increasing vasodilation; inhibiting mitochondrial reactive oxygen species production and platelet aggregation. In conclusion, the evidence for beneficial effects of dietary nitrate on blood pressure and endothelial function is promising. Further long-term randomised controlled human intervention studies assessing the potential effects of dietary nitrate on blood pressure and endothelial function are needed, particularly in individuals with hypertension and at risk of CVD.
Dietary nitrate, from beetroot, has been reported to lower blood pressure (BP) by the sequential reduction of nitrate to nitrite and further to NO in the circulation. However, the impact of beetroot on microvascular vasodilation and arterial stiffness is unknown. In addition, beetroot is consumed by only 4.5% of the UK population, whereas bread is a staple component of the diet. Thus, we investigated the acute effects of beetroot bread (BB) on microvascular vasodilation, arterial stiffness, and BP in healthy participants. Twenty-three healthy men received 200 g bread containing 100 g beetroot (1.1 mmol nitrate) or 200 g control white bread (CB; 0 g beetroot, 0.01 mmol nitrate) in an acute, randomized, open-label, controlled crossover trial. The primary outcome was postprandial microvascular vasodilation measured by laser Doppler iontophoresis and the secondary outcomes were arterial stiffness measured by Pulse Wave Analysis and Velocity and ambulatory BP measured at regular intervals for a total period of 6 h. Plasma nitrate and nitrite were measured at regular intervals for a total period of 7 h. The incremental area under the curve (0-6 h after ingestion of bread) for endothelium-independent vasodilation was greater (P = 0.017) and lower for diastolic BP (DBP; P = 0.032) but not systolic (P = 0.99) BP after BB compared with CB. These effects occurred in conjunction with increases in plasma and urinary nitrate (P < 0.0001) and nitrite (P < 0.001). BB acutely increased endothelium-independent vasodilation and decreased DBP. Therefore, enriching bread with beetroot may be a suitable vehicle to increase intakes of cardioprotective beetroot in the diet and may provide new therapeutic perspectives in the management of hypertension.
PurposeThe association between egg consumption and cardiovascular disease (CVD) or type 2 diabetes (T2D) remains controversial. We investigated the association between egg consumption and risk of CVD (primary outcome), T2D and mortality in the Caerphilly prospective cohort study (CAPS) and National Diet and Nutritional Survey (NDNS).MethodsCAPS included 2512 men aged 45–59 years (1979–1983). Dietary intake, disease incidence and mortality were updated at 5-year intervals. NDNS included 754 adults aged 19–64 years from 2008 to 2012.ResultsMen free of CVD (n = 1781) were followed up for a mean of 22.8 years, egg consumption was not associated with new incidence of CVD (n = 715), mortality (n = 1028) or T2D (n = 120). When stroke (n = 248), MI (n = 477), heart failure (n = 201) were investigated separately, no associations between egg consumption and stroke and MI were identified, however, increased risk of stroke in subjects with T2D and/or impaired glucose tolerance (IGT, fasting plasma glucose ≥ 6.1 mmol/L), adjusted hazard ratios (95% CI) were 1.0 (reference), 1.09 (0.41, 2.88), 0.96 (0.37, 2.50), 1.39 (0.54, 3.56) and 2.87 (1.13, 7.27) for egg intake (n) of 0 ≤ n ≤ 1, 1 < n ≤ 2, 2 < n ≤ 3, 3 < n < 5, and n ≥ 5 eggs/wk, respectively (P = 0.01). In addition, cross-sectional analyses revealed that higher egg consumption was significantly associated with elevated fasting glucose in those with T2D and/or IGT (CAPS: baseline P = 0.02 and 5-year P = 0.04; NDNS: P = 0.05).ConclusionsHigher egg consumption was associated with higher blood glucose in subjects with T2D and/or IGT. The increased incidence of stroke with higher egg consumption among T2D and/or IGT sub-group warrants further investigation.Electronic supplementary materialThe online version of this article (doi:10.1007/s00394-017-1566-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.