Balancing trophic and apoptotic cues is critical for development and regeneration of neuronal circuits. Here we identify SorCS2 as a proneurotrophin (proNT) receptor, mediating both trophic and apoptotic signals in conjunction with p75(NTR). CNS neurons, but not glia, express SorCS2 as a single-chain protein that is essential for proBDNF-induced growth cone collapse in developing dopaminergic processes. SorCS2- or p75(NTR)-deficient in mice caused reduced dopamine levels and metabolism and dopaminergic hyperinnervation of the frontal cortex. Accordingly, both knockout models displayed a paradoxical behavioral response to amphetamine reminiscent of ADHD. Contrary, in PNS glia, but not in neurons, proteolytic processing produced a two-chain SorCS2 isoform that mediated proNT-dependent Schwann cell apoptosis. Sciatic nerve injury triggered generation of two-chain SorCS2 in p75(NTR)-positive dying Schwann cells, with apoptosis being profoundly attenuated in Sorcs2(-/-) mice. In conclusion, we have demonstrated that two-chain processing of SorCS2 enables neurons and glia to respond differently to proneurotrophins.
The development and progression of Alzheimer's disease is linked to excessive production of toxic amyloid- peptide, initiated by -secretase cleavage of the amyloid precursor protein (APP). In contrast, soluble APP␣ (sAPP␣) generated by the ␣-secretase is known to stimulate dendritic branching and enhance synaptic function. Regulation of APP processing, and the shift from neurotrophic to neurotoxic APP metabolism remains poorly understood, but the cellular localization of APP and its interaction with various receptors is considered important. We here identify sortilin as a novel APP interaction partner. Like the related APP receptor SorLA, sortilin is highly expressed in the CNS, but whereas SorLA mainly colocalizes with APP in the soma, sortilin interacts with APP in neurites. The presence of sortilin promotes ␣-secretase cleavage of APP, unlike SorLA, which inhibits the generation of all soluble products. Also, sortilin and SorLA both bind and mediate internalization of sAPP but to different cellular compartments.
Coronary artery disease is the main cause of death worldwide and accelerated by increased plasma levels of cholesterol-rich low-density lipoprotein particles (LDL). Circulating PCSK9 contributes to coronary artery disease by inducing lysosomal degradation of the LDL receptor (LDLR) in the liver and thereby reducing LDL clearance. Here, we show that liver heparan sulfate proteoglycans are PCSK9 receptors and essential for PCSK9-induced LDLR degradation. The heparan sulfate-binding site is located in the PCSK9 prodomain and formed by surface-exposed basic residues interacting with trisulfated heparan sulfate disaccharide repeats. Accordingly, heparan sulfate mimetics and monoclonal antibodies directed against the heparan sulfate-binding site are potent PCSK9 inhibitors. We propose that heparan sulfate proteoglycans lining the hepatocyte surface capture PCSK9 and facilitates subsequent PCSK9:LDLR complex formation. Our findings provide new insights into LDL biology and show that targeting PCSK9 using heparan sulfate mimetics is a potential therapeutic strategy in coronary artery disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.