Leishmania donovani possess two isoforms of Rab5 (Rab5a and Rab5b), which are involved in fluid phase and receptor-mediated endocytosis, respectively. We have characterized the solution structure and dynamics of a stabilized truncated LdRab5a mutant. For the purpose of NMR structure determination, protein stability was enhanced by systematically introducing various deletions and mutations. Deletion of hypervariable C-terminal and the 20 residues LdRab5a specific insert slightly enhanced the stability, which was further improved by C107S mutation. The final construct, truncated LdRab5a with C107S mutation, was found to be stable for longer durations at higher concentration, with an increase in melting temperature by 10°C. Solution structure of truncated LdRab5a shows the characteristic GTPase fold having nucleotide and effector binding sites. Orientation of switch I and switch II regions match well with that of guanosine 5'-(β, γ-imido)triphosphate (GppNHp)-bound human Rab5a, indicating that the truncated LdRab5a attains the canonical GTP bound state. However, the backbone dynamics of the P-loop, switch I, and switch II regions were slower than that observed for guanosine 5'-(β, γ-imido)triphosphate (GMPPNP)-bound H-Ras. This dynamic profile may further complement the residue-specific complementarity in determining the specificity of interaction with the effectors. In parallel, biophysical investigations revealed the urea induced unfolding of truncated LdRab5a to be a four-state process that involved two intermediates, I1 and I2. The maximal 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (Bis-ANS) binding was observed for I2 state, which was inferred to have molten globule like characteristics. Overall, the strategy presented would have significant impact for studying other Rab and small GTPase proteins by NMR spectroscopy.
The nematode Caenorhabditis elegans has two ADF/cofilin isoforms, UNC-60A and UNC-60B, which are expressed from the unc60 gene by alternative splicing. UNC-60A has higher activity to cause net depolymerization, and to inhibit polymerization, than UNC-60B. UNC-60B, on the other hand, shows much stronger severing activity than UNC-60A. To understand the structural basis of their functional differences, we have determined the solution structures of UNC-60A and UNC-60B proteins and characterized backbone dynamics. Both UNC-60A and UNC-60B show conserved ADF/cofilin fold. The G-actin binding regions of the two proteins are structurally and dynamically conserved. Accordingly, UNC-60A and UNC-60B individually bind to rabbit muscle ADP-G-actin with high affinities, with Kd of 32.25 nM and 8.62 nM, respectively. The primary differences between these strong and weak severing proteins were observed in the orientation and dynamics of the F-actin binding loop (F-loop). In the strong severing activity isoform UNC-60B, the orientation of F-loop was towards the recently identified F-loop binding region on F-actin, and the F-loop was relatively more flexible with fourteen residues showing motions on nanosecond-picosecond timescale. In contrast, in the weak severing protein isoform UNC-60A, the orientation of F-loop was away from the F-loop binding region and inclined towards its own C-terminal and strand β6. It was also relatively less flexible with only five residues showing motions on nanosecond-picosecond timescale. These differences in structure and dynamics seem to directly correlate to the differential F-actin site-binding and severing properties of UNC-60A and UNC-60B, and other related ADF/cofilin proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.