Zoonotic diseases are a significant burden on animal and human health, particularly in developing countries. Despite recognition of this fact, endemic zoonoses often remain undiagnosed in people, instead being mistaken for febrile diseases such as malaria. Here, as part of Veterinary Record's ongoing series of articles on One Health, a multidisciplinary team of researchers from Scotland, Tanzania and New Zealand argues that a One Health approach is needed to effectively combat these diseases
Background Current animal tracking studies are most often based on the application of external geolocators such as GPS and radio transmitters. While these technologies provide detailed movement data, they are costly to acquire and maintain, which often restricts sample sizes. Furthermore, deploying external geolocators requires physically capturing and recapturing of animals, which poses an additional welfare concern. Natural biomarkers provide an alternative, non-invasive approach for addressing a range of geolocation questions and can, because of relatively low cost, be collected from many individuals thereby broadening the scope for population-wide inference. Methods We developed a low-cost, minimally invasive method for distinguishing between local versus non-local movements of cattle using sulfur isotope ratios (δ34S) in cattle tail hair collected in the Greater Serengeti Ecosystem, Tanzania. Results We used a Generalized Additive Model to generate a predicted δ34S isoscape across the study area. This isoscape was constructed using spatial smoothers and underpinned by the positive relationship between δ34S values and lithology. We then established a strong relationship between δ34S from recent sections of cattle tail hair and the δ34S from grasses sampled in the immediate vicinity of an individual’s location, suggesting δ34S in the hair reflects the δ34S in the environment. By combining uncertainty in estimation of the isoscape, with predictions of tail hair δ34S given an animal’s position in the isoscape we estimated the anisotropic distribution of travel distances across the Serengeti ecosystem sufficient to detect movement using sulfur stable isotopes. Conclusions While the focus of our study was on cattle, this approach can be modified to understand movements in other mobile organisms where the sulfur isoscape is sufficiently heterogeneous relative to the spatial scale of animal movements and where tracking with traditional methods is difficult.
In Africa, livestock are important to local and national economies, but their productivity is constrained by infectious diseases. Comprehensive information on livestock movements and contacts is required to devise appropriate disease control strategies; yet, understanding contact risk in systems where herds mix extensively, and where different pathogens can be transmitted at different spatial and temporal scales, remains a major challenge. We deployed Global Positioning System collars on cattle in 52 herds in a traditional agropastoral system in western Serengeti, Tanzania, to understand fine-scale movements and between-herd contacts, and to identify locations of greatest interaction between herds. We examined contact across spatiotemporal scales relevant to different disease transmission scenarios. Daily cattle movements increased with herd size and rainfall. Generally, contact between herds was greatest away from households, during periods with low rainfall and in locations close to dipping points. We demonstrate how movements and contacts affect the risk of disease spread. For example, transmission risk is relatively sensitive to the survival time of different pathogens in the environment, and less sensitive to transmission distance, at least over the range of the spatiotemporal definitions of contacts that we explored. We identify times and locations of greatest disease transmission potential and that could be targeted through tailored control strategies.
Livestock mobility exacerbates infectious disease risks across sub-Saharan Africa, but enables critical access to grazing and water resources, and trade. Identifying locations of high livestock traffic offers opportunities for targeted control. We focus on Tanzanian agropastoral and pastoral communities that account respectively for over 75% and 15% of livestock husbandry in eastern Africa. We construct networks of livestock connectivity based on participatory mapping data on herd movements reported by village livestock keepers as well as data from trading points to understand how seasonal availability of resources, land-use and trade influence the movements of livestock. In communities that practise agropastoralism, inter- and intra-village connectivity through communal livestock resources (e.g. pasture and water) was 1.9 times higher in the dry compared to the wet season suggesting greater livestock traffic and increased contact probability. In contrast, livestock from pastoral communities were 1.6 times more connected at communal locations during the wet season when they also tended to move farther (by 3 km compared to the dry season). Trade-linked movements were twice more likely from rural to urban locations. Urban locations were central to all networks, particularly those with potentially high onward movements, for example to abattoirs, livestock holding grounds, or other markets, including beyond national boundaries. We demonstrate how livestock movement information can be used to devise strategic interventions that target critical livestock aggregation points (i.e. locations of high centrality values) and times (i.e. prior to and after the wet season in pastoral and agropastoral areas, respectively). Such targeted interventions are a cost-effective approach to limit infection without restricting livestock mobility critical to sustainable livelihoods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.