A family of deterministic SEIRS epidemic dynamic models for malaria is presented. The family type is determined by a general functional response for the nonlinear incidence rate of the disease. Furthermore, the malaria models exhibit three random delays — the incubation periods of the plasmodium inside the female mosquito and human hosts, and also the period of effective acquired natural immunity against the disease. Insights about the effects of the delays and the nonlinear incidence rate of the disease on (1) eradication and (2) persistence of malaria in the human population are obtained via analyzing and interpreting the global asymptotic stability results of the disease-free and endemic equilibrium of the system. The basic reproduction numbers and other threshold values for malaria are calculated, and superior threshold conditions for the stability of the equilibria are found. Numerical simulation results are presented.
The stochastic extinction and stability in the mean of a family of SEIRS malaria models with a general nonlinear incidence rate is presented. The dynamics is driven by independent white noise processes from the disease transmission and natural death rates. The basic reproduction number R * 0 , the expected survival probability of the plasmodium E(e −(µv T 1 +µT 2 ) ), and other threshold values are calculated. A sample Lyapunov exponential analysis for the system is utilized to obtain extinction results. Moreover, the rate of extinction of malaria is estimated, and innovative local Martingale and Lyapunov functional techniques are applied to establish the strong persistence, and asymptotic stability in the mean of the malaria-free steady population. Moreover, for either R * 0 < 1, or E(e −(µv T 1 +µT 2 ) ) < 1 R * 0 , whenever R * 0 ≥ 1, respectively, extinction of malaria occurs. Furthermore, the robustness of these threshold conditions to the intensity of noise from the disease transmission rate is exhibited. Numerical simulation results are presented.Recently, Wanduku[51] presented and studied the following novel family of SEIRS epi-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.