The Internet of Things (IoT) is based on objects or “things” that have the ability to communicate and transfer data. Due to the large number of connected objects and devices, there has been a rapid growth in the amount of data that are transferred over the Internet. To support this increase, the heterogeneity of devices and their geographical distributions, there is a need for IoT gateways that can cope with this demand. The SOFTWAY4IoT project, which was funded by the National Education and Research Network (RNP), has developed a software-defined and virtualized IoT gateway that supports multiple wireless communication technologies and fog/cloud environment integration. In this work, we propose a planning method that uses optimization models for the deployment of IoT gateways in smart campuses. The presented models aimed to quantify the minimum number of IoT gateways that is necessary to cover the desired area and their positions and to distribute IoT devices to the respective gateways. For this purpose, the communication technology range and the data link consumption were defined as the parameters for the optimization models. Three models are presented, which use LoRa, Wi-Fi, and BLE communication technologies. The gateway deployment problem was solved in two steps: first, the gateways were quantified using a linear programming model; second, the gateway positions and the distribution of IoT devices were calculated using the classical K-means clustering algorithm and the metaheuristic particle swarm optimization. Case studies and experiments were conducted at the Samambaia Campus of the Federal University of Goiás as an example. Finally, an analysis of the three models was performed, using metrics such as the silhouette coefficient. Non-parametric hypothesis tests were also applied to the performed experiments to verify that the proposed models did not produce results using the same population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.