While optical surveys regularly discover slow transients like supernovae on their own, the most common way to discover extragalactic fast transients, which fade within a few nights in the optical, is via follow-up observations of gamma-ray burst and gravitational-wave triggers. However, wide-field surveys have the potential to also identify rapidly fading transients, including counterparts to multimessenger sources, independently of such external triggers. The volumetric survey speed of the Zwicky Transient Facility (ZTF), in particular, makes the survey sensitive to objects that are as faint and fast-fading as kilonovae, the optical counterparts to binary neutron stars and neutron star-black hole mergers, out to almost 200 Mpc. In this paper, we introduce an open-source software infrastructure, the ZTF REaltime Search and Triggering, ZTFReST, which is designed to identify kilonovae and fast optical transients in ZTF data. Using the ZTF alert stream combined with forced point spread function photometry, we have implemented automated candidate ranking based on their photometric evolution and fitting to kilonova models. Automated triggering of follow-up systems, such as Las Cumbres Observatory, for sources that pass user-defined thresholds, has also been implemented. In 13 months of science validation, we found several extragalactic fast transients independent of any external trigger (though some counterparts were identified later), including at least one supernova with post-
The Cadmium Zinc Telluride Imager (CZTI) on board AstroSat has been regularly detecting gamma-ray bursts (GRBs) since its launch in 2015. Its sensitivity to polarization measurements at energies above 100 keV allows CZTI to attempt spectropolarimetric studies of GRBs. Here, we present the first catalog of GRB polarization measurements made by CZTI during its first five years of operation. This includes the time-integrated polarization measurements of the prompt emission of 20 GRBs in the energy range 100–600 keV. The sample includes the bright GRBs that were detected within an angle range of 0°–60° and 120°–180° where the instrument has useful polarization sensitivity and is less prone to systematics. We implement a few new modifications in the analysis to enhance the polarimetric sensitivity of the instrument. The majority of the GRBs in the sample are found to possess less/null polarization across the total bursts’ duration in contrast to a small fraction of five GRBs that exhibit high polarization. The low polarization across the bursts might be due either to the burst being intrinsically weakly polarized or to a varying polarization angle within the burst even when it is highly polarized. In comparison to POLAR measurements, CZTI has detected a larger number of cases with high polarization. This may be a consequence of the higher energy window of CZTI observations, which results in the sampling of a shorter duration of burst emissions than POLAR, thereby probing emissions with less temporal variation in polarization properties.
Multi-pulsed GRB 190530A, detected by the GBM and LAT onboard Fermi, is the sixth most fluent GBM burst detected so far. This paper presents the timing, spectral, and polarimetric analysis of the prompt emission observed using AstroSat and Fermi to provide insight into the prompt emission radiation mechanisms. The time-integrated spectrum shows conclusive proof of two breaks due to peak energy and a second lower energy break. Time-integrated (55.43 ± 21.30 %) as well as time-resolved polarization measurements, made by the Cadmium Zinc Telluride Imager (CZTI) onboard AstroSat, show a hint of high degree of polarization. The presence of a hint of high degree of polarization and the values of low energy spectral index (αpt) do not run over the synchrotron limit for the first two pulses, supporting the synchrotron origin in an ordered magnetic field. However, during the third pulse, αpt exceeds the synchrotron line of death in few bins, and a thermal signature along with the synchrotron component in the time-resolved spectra is observed. Furthermore, we also report the earliest optical observations constraining afterglow polarization using the MASTER (P < 1.3 %) and the redshift measurement (z= 0.9386) obtained with the 10.4m GTC telescopes. The broadband afterglow can be described with a forward shock model for an ISM-like medium with a wide jet opening angle. We determine a circumburst density of n0 ∼ 7.41, kinetic energy EK ∼ 7.24 × 1054 erg, and radiated γ-ray energy Eγ, iso ∼ 6.05 × 1054 erg, respectively.
The Cadmium Zinc Telluride Imager (CZTI) on AstroSat is a hard X-ray coded-aperture mask instrument with a primary field-of-view of 4:6 Â 4:6 (FWHM). The instrument collimators become increasingly transparent at energies above $ 100 keV, making CZTI sensitive to radiation from the entire sky. While this has enabled CZTI to detect a large number of off-axis transient sources, calculating the source flux or spectrum requires knowledge of the direction and energy dependent attenuation of the radiation incident upon the detector. Here, we present a GEANT4-based mass model of CZTI and AstroSat that can be used to simulate the satellite response to the incident radiation, and to calculate an effective ''response file'' for converting the source counts into fluxes and spectra. We provide details of the geometry and interaction physics, and validate the model by comparing the simulations of imaging and flux studies with observations. Spectroscopic validation of the mass model is discussed in a companion paper, Chattopadhyay et al.
We present results from e xtensiv e broadband follow-up of GRB 210204A o v er the period of 30 d. We detect optical flares in the afterglow at 7.6 × 10 5 s and 1.1 × 10 6 s after the burst: the most delayed flaring ever detected in a GRB afterglow. At the source redshift of 0.876, the rest-frame delay is 5.8 × 10 5 s (6.71 d). We investigate possible causes for this flaring and conclude that the most likely cause is a refreshed shock in the jet. The prompt emission of the GRB is within the range of typical long bursts: it shows three disjoint emission episodes, which all follow the typical GRB correlations. This suggests that GRB 210204A might not have any special properties that caused late-time flaring, and the lack of such detections for other afterglows might be resulting from the paucity of late-time observations. Systematic late-time follow-up of a larger sample of GRBs can shed more light on such afterglow behaviour. Further analysis of the GRB 210204A shows that the late-time bump in the light curve is highly unlikely due to underlying SNe at redshift (z) = 0.876 and is more likely due to the late-time flaring activity. The cause of this variability is not clearly quantifiable due to the lack of multiband data at late-time constraints by bad weather conditions. The flare of GRB 210204A is the latest flare detected to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.