Transient gene expression (TGE) from mammalian cells is an increasingly important tool for the rapid production of recombinant proteins for research applications in biochemistry, structural biology, and biomedicine. Here we review methods for the transfection of human embryo kidney (HEK-293) and Chinese hamster ovary (CHO) cells in suspension culture using the cationic polymer polyethylenimine (PEI) for gene delivery.
Transient gene expression (TGE) is a rapid method for the production of recombinant proteins in mammalian cells. While the TGE volumetric productivity has improved significantly over the past decade, the amount of plasmid DNA (pDNA) needed for transfection remains very high. Here, we examined the use of non-specific (filler) DNA to partially replace the transgene-bearing plasmid DNA (coding pDNA) in transfections of Chinese hamster ovary (CHO) and human embryo kidney (HEK-293E) cells. When the optimal amount of coding pDNA for either host was reduced by 67% and replaced with filler DNA, the recombinant protein yield decreased by only 25% relative to the yield in control transfections. Filler DNA did not affect the cellular uptake or intracellular stability of coding pDNA, but its presence lead to increases of the percentage of transfected cells and the steady-state level of transgene mRNA compared to control transfections. Studies of the physicochemical properties of DNA-polyethyleneimine (PEI) complexes with or without filler DNA did not reveal any differences in their size or surface charge. The results suggest that filler DNA allows the coding pDNA to be distributed over a greater number of DNA-PEI complexes, leading to a higher percentage of transfected cells. The co-assembly of filler DNA and coding pDNA within complexes may also allow the latter to be more efficiently utilized by the cell's transcription machinery, resulting in a higher level of transgene mRNA.
The spike protein of the pandemic human corona virus is essential for its entry into human cells. In fact, most neutralizing antibodies against Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) are directed against the Virus-surface exposed spike protein, making it the antigen of choice for use in vaccines and diagnostic tests. In the current pandemic context, global demand for spike proteins has rapidly increased and could exceed hundreds of grams to kilograms annually. Coronavirus spikes are large heavily glycosylated homo-trimeric complexes, with inherent instability. The poor manufacturability now threatens the availability of these proteins for vaccines and diagnostic tests. Here, we outline scalable, Good Manufacturing Practice (GMP) compliant, and chemically defined processes for the production of two cell-secreted stabilized forms of the trimeric spike proteins (Wuhan and D614G variant). The processes are chemically defined and based on clonal suspension-CHO cell populations and on protein purification via a two-step scalable downstream process. The trimeric conformation was confirmed using electron microscopy and HPLC analysis. Binding to susceptible cells was shown using a virus-inhibition assay. The diagnostic sensitivity and specificity for detection of serum SARS-CoV-2-specific-immunoglobulin molecules was found to exceed that of spike fragments (Spike subunit-1, S1 and Receptor Binding Domain, RBD). The process described here will enable production of sufficient high-quality trimeric spike protein to meet the global demand for SARS-CoV-2 diagnostic tests and potentially vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.