IMPORTANCE Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of the motor nervous system. Clinical studies have demonstrated cortical and spinal motor neuron hyperexcitability using transcranial magnetic stimulation and threshold tracking nerve conduction studies, respectively, although metrics of excitability have not been used as pharmacodynamic biomarkers in multi-site clinical trials. OBJECTIVE To ascertain whether ezogabine decreases cortical and spinal motor neuron excitability in ALS. DESIGN, SETTING, AND PARTICIPANTSThis double-blind, placebo-controlled phase 2 randomized clinical trial sought consent from eligible participants from November 3, 2015, to November 9, 2017, and was conducted at 12 US sites within the Northeast ALS Consortium. Participants were randomized in equal numbers to a higher or lower dose of ezogabine or to an identical matched placebo, and they completed in-person visits at screening, baseline, week 6, and week 8 for clinical assessment and neurophysiological measurements. INTERVENTIONS Participants were randomized to receive 600 mg/d or 900 mg/d of ezogabine or a matched placebo for 10 weeks. MAIN OUTCOMES AND MEASURESThe primary outcome was change in short-interval intracortical inhibition (SICI; SICI −1 was used in analysis to reflect stronger inhibition from an increase in amplitude) from pretreatment mean at screening and baseline to the full-dose treatment mean at weeks 6 and 8. The secondary outcomes included levels of cortical motor neuron excitability (including resting motor threshold) measured by transcranial magnetic stimulation and spinal motor neuron excitability (including strength-duration time constant) measured by threshold tracking nerve conduction studies.RESULTS A total of 65 participants were randomized to placebo (23), 600 mg/d of ezogabine (23), and 900 mg/d of ezogabine (19 participants); 45 were men (69.2%) and the mean (SD) age was 58.3 (8.8) years. The SICI −1 increased by 53% (mean ratio, 1.53; 95% CI, 1.12-2.09; P = .009) in the 900-mg/d ezogabine group vs placebo group. The SICI −1 did not change in the 600-mg/d ezogabine group vs placebo group (mean ratio, 1.15; 95% CI, 0.87-1.52; P = .31). The resting motor threshold increased in the 600-mg/d ezogabine group vs placebo group (mean ratio, 4.61; 95% CI, 0.21-9.01; P = .04) but not in the 900-mg/d ezogabine group vs placebo group (mean ratio, 1.95; 95% CI, −2.64 to 6.54; P = .40). Ezogabine caused a dose-dependent decrease in excitability by several other metrics, including strength-duration time constant in the 900-mg/d ezogabine group vs placebo group (mean ratio, 0.73; 95% CI, 0.60 to 0.87; P < .001).CONCLUSIONS AND RELEVANCE Ezogabine decreased cortical and spinal motor neuron excitability in participants with ALS, suggesting that such neurophysiological metrics may be used as pharmacodynamic biomarkers in multisite clinical trials.
Autonomic neuropathies represent a complex group of disorders that preferentially target autonomic fibers and can be classified as either acute/subacute or chronic in onset. Acute-onset autonomic neuropathies manifest with such conditions as paraneoplastic syndromes, Guillain-Barre syndrome, Sjögren syndrome, infection, or toxins/chemotherapy. When the presentation is acute, immune-mediated, and without a secondary cause, autoimmune autonomic ganglionopathy is likely, and should be considered for immunotherapy. Of the chronic-onset forms, diabetes is the most widespread and disabling, with autonomic impairment portending increased mortality and cardiac wall remodeling risk. Acquired light chain (AL) and transthyretin (TTR) amyloidosis represent two other key etiologies, with TTR amyloidosis now amenable to newly-approved gene-modifying therapies. The COMPASS-31 questionnaire is a validated outcome measure that can be used to monitor autonomic severity and track treatment response. Symptomatic treatments targeting orthostatic hypotension, among other symptoms, should be individualized and complement disease-modifying therapy, when possible.
This patient presented with exercise intolerance, myoglobinuria, and almost normal muscle strength into adolescence, which is uncommon in sarcoglycanopathies. This uncommon presentation should be kept in mind, so that early recognition and intervention may prevent future comorbidities and help preserve the quality of life. Muscle Nerve 54: 161-164, 2016.
Over six billion doses of Coronavirus Disease 2019 (COVID-19) vaccines have been administered worldwide. Amidst the global COVID-19 vaccination campaign, vaccine-related side effects are of ongoing concern and investigation. According to the Centers for Disease Control and Prevention (CDC) and the United States Department of Health and Human Services, three main conditions in adults have surfaced in association with receiving the COVID-19 vaccines. These include thrombosis with thrombocytopenia syndrome (TTS), a rare syndrome involving venous or arterial thrombosis and thrombocytopenia, Guillain-Barre syndrome (GBS), and myocarditis. While a number of GBS cases in adults have been published, to our knowledge, only one pediatric case of COVID-19 vaccine-related GBS has been reported. Herein we describe a case of sensory predominant GBS following the Pfizer-BioNTech COVID-19 vaccine in a 16-year-old female presenting with bilaterally ascending upper and lower extremity numbness and paresthesia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.