The structure of pili from the archaeon Methanococcus maripaludis is unlike that of any bacterial pili. However, genetic analysis of the genes involved in the formation of these pili has been lacking until this study. Pili were isolated from a nonflagellated (⌬flaK) mutant and shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to consist primarily of subunits with an apparent molecular mass of 17 kDa. In-frame deletions were created in three genes, MMP0233, MMP0236, and MMP0237, which encode proteins with bacterial type IV pilin-like signal peptides previously identified by in silico methodology as likely candidates for pilus structural proteins. Deletion of MMP0236 or MMP0237 resulted in mutant cells completely devoid of pili on the cell surface, while deletion of the third pilin-like gene, MMP0233, resulted in cells greatly reduced in the number of pili on the surface. Complementation with the deleted gene in each case returned the cells to a piliated state. Surprisingly, mass spectrometry analysis of purified pili identified the major structural pilin as another type IV pilin-like protein, MMP1685, whose gene is located outside the first pilus locus. This protein was found to be glycosylated with an N-linked branched pentasaccharide glycan. Deletion and complementation analysis confirmed that MMP1685 is required for piliation.
Methanococcus maripaludis has two surface appendages, namely flagella and pili. Flagella have been shown to be required for swimming, but no specific role has been assigned as yet to pili. In this report, wild-type M. maripaludis cells are compared with mutants lacking either pili or flagella or both surface appendages in their ability to attach to a variety of surfaces including nickel, gold and molybdenum grids as well as glass, silicon and mica. Wild-type cells attached to varying degrees to all surfaces tested, except mica, via their flagella as observed by scanning electron microscopy. Large cables of flagella were found to leave the cell and to be unwound on the surface. In addition, such cables were often found to connect cells. In contrast, cells lacking either flagella or pili or both surface appendages were unable to attach efficiently to any surfaces. This indicates a second role for flagella in addition to swimming in M. maripaludis, as well as a first role for pili in this organism, namely in surface attachment.
Organisms representing diverse subgroupings of the Domain Archaea are known to possess unusual surface structures. These can include ones unique to Archaea such as cannulae and hami as well as archaella (archaeal flagella) and various types of pili that superficially resemble their namesakes in Bacteria, although with significant differences. Major advances have occurred particularly in the study of archaella and pili using model organisms with recently developed advanced genetic tools. There is common use of a type IV pili-model of assembly for several archaeal surface structures including archaella, certain pili and sugar binding structures termed bindosomes. In addition, there are widespread posttranslational modifications of archaellins and pilins with N-linked glycans, with some containing novel sugars. Archaeal surface structures are involved in such diverse functions as swimming, attachment to surfaces, cell to cell contact resulting in genetic transfer, biofilm formation, and possible intercellular communication. Sometimes functions are co-dependent on other surface structures. These structures and the regulation of their assembly are important features that allow various Archaea, including thermoacidophilic, hyperthermophilic, halophilic, and anaerobic ones, to survive and thrive in the extreme environments that are commonly inhabited by members of this domain.
Many archaeal proteins undergo posttranslational modifications. S-layer proteins and flagellins have been used successfully to study a variety of these modifications, including N-linked glycosylation, signal peptide removal and lipid modification. Use of these well-characterized reporter proteins in the genetically tractable model organisms, Haloferax volcanii, Methanococcus voltae and Methanococcus maripaludis, has allowed dissection of the pathways and characterization of many of the enzymes responsible for these modifications. Such studies have identified archaeal-specific variations in signal peptidase activity not found in the other domains of life, as well as the enzymes responsible for assembly and biosynthesis of novel N-linked glycans. In vitro assays for some of these enzymes have already been developed. N-linked glycosylation is not essential for either Hfx. volcanii or the Methanococcus species, an observation that allowed researchers to analyze the role played by glycosylation in the function of both S-layers and flagellins, by generating mutants possessing these reporters with only partial attached glycans or lacking glycan altogether. In future studies, it will be possible to consider questions related to the heterogeneity associated with given modifications, such as differential or modulated glycosylation.
The genetics and biochemistry of the N-linked glycosylation system of Archaea have been investigated over the past 5 years using flagellins and S layers as reporter proteins in the model organisms, Methanococcus voltae, Methanococcus maripaludis, and Haloferax volcanii. Structures of archaeal N-linked glycans have indicated a variety of linking sugars as well as unique sugar components. In M. voltae, M. maripaludis, and H. volcanii, a number of archaeal glycosylation genes (agl) have been identified by deletion and complementation studies. These include many of the glycosyltransferases and the oligosaccharyltransferase needed to assemble the glycans as well as some of the genes encoding enzymes required for the biosynthesis of the sugars themselves. The N-linked glycosylation system is not essential for any of M. voltae, M. maripaludis, or H. volcanii, as demonstrated by the successful isolation of mutants carrying deletions in the oligosaccharyltransferase gene aglB (a homologue of the eukaryotic Stt3 subunit of the oligosaccharyltransferase complex). However, mutations that affect the glycan structure have serious effects on both flagellation and S layer function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.