Amyloid plaques are one of the central manifestations of Alzheimer’s disease pathology. Aggregation of the amyloid beta (Aβ) protein from amorphous oligomeric species to mature fibrils has been extensively studied. However, structural heterogeneities in prefibrillar species, and how that affects the structure of later-stage aggregates are not yet well understood. The integration of infrared spectroscopy with atomic force microscopy (AFM-IR) allows for identifying the signatures of individual nanoscale aggregates by spatially resolving spectra. We use AFM-IR to demonstrate that amyloid oligomers exhibit significant structural variations as evidenced in their infrared spectra. This heterogeneity is transmitted to and retained in protofibrils and fibrils. We show that amyloid fibrils do not always conform to their putative ordered structure and structurally different domains exist in the same fibril. We further demonstrate that these structural heterogeneities manifest themselves as a lack of β sheet structure in amyloid plaques in Alzheimer’s tissue using infrared imaging.
Spontaneous aggregation of amyloid beta (Aβ) proteins leading to the formation of oligomers and eventually into fibrils has been identified as a key pathological signature of Alzheimer's disease. The structure of late-stage aggregates have been studied in depth by conventional structural biology techniques, including nuclear magnetic resonance, Xray crystallography, and infrared spectroscopy; however, the structure of early-stage aggregates is less known due to their transient nature. As a result, the structural evolution of amyloid aggregates from early oligomers to mature fibrils is still not fully understood. Here, we have applied atomic force microscopy−infrared nanospectroscopy to investigate the aggregation of Aβ 16−22, which spans the amyloidogenic core of the Aβ peptide. Our results demonstrate that Aβ 16−22 involves a structural transition from oligomers with parallel β-sheets to antiparallel fibrils through disordered and possibly helical intermediate fibril structures, contrary to the known aggregation pathway of full-length Aβ.
The aggregation of amyloid beta (Aβ) into fibrillar aggregates is a key feature of Alzheimer’s disease (AD) pathology. β-carotene and related compounds have been shown to associate with amyloid aggregates and have direct impact on the formation of amyloid fibrils. However, the precise effect of β-carotene on the structure of amyloid aggregates is not known, which poses a limitation towards developing it as a potential AD therapeutic. In this report, we use nanoscale AFM-IR spectroscopy to probe the structure of Aβ oligomers and fibrils at the single aggregate level and demonstrate that the main effect of β-carotene towards modulating Aβ aggregation is not to inhibit fibril formation but to alter the secondary structure of the fibrils and promote fibrils that lack the characteristic ordered beta structure.
Spontaneous aggregation of amyloid beta proteins leading to the formation of oligomers and eventually into fibrils has been identified as a key pathological signature of Alzheimers disease. Structure of late stage aggregates have been studied in depth by conventional structural biology techniques including Nuclear Magnetic Resonance, X-ray crystallography and Infrared Spectroscopy; however the structure of early-stage aggregates is less known due to their transient nature. As a result, the structural evolution of amyloid aggregates from its early oligomers to mature fibril is still not fully understood. Here we have applied AFM-IR nanospectroscopy to investigate the aggregation of amyloid beta 16-22, which spans the amyloidogenic core of the amyloid beta peptide. Our results demonstrate that amyloid beta 16-22 involves a structural transition from oligomers with parallel beta sheets to antiparallel fibrils through disordered and possibly helical intermediate fibril structures, contrary to the known aggregation pathway of full-length amyloid beta 42.
Cerebral amyloid angiopathy (CAA), which involves amyloid deposition in blood vessels leading to fatal cerebral hemorrhage and recurring strokes, is present in the majority Alzheimer's disease (AD) cases. Familial mutations in the amyloid β peptide are correlated to higher risks of CAA and are mostly comprised of mutations at residues 22 and 23. While the structure of the wild-type Aβ peptide has been investigated in great detail, less is known about the structure of mutants involved in CAA and evolutions thereof. This is particularly true for mutations at residue 22, for which detailed molecular structures, as typically determined from Nuclear Magnetic Resonance (NMR) spectroscopy or electron microscopy, do not exist. In this report, we have used nanoscale infrared (IR) spectroscopy augmented with atomic force microscopy (AFM-IR) to investigate structural evolution of the Aβ Dutch mutant (E22Q) at the single aggregate level. We show that in the oligomeric stage, the structural ensemble is distinctly bimodal, with the two subtypes differing with respect to population of parallel β sheets. Fibrils on the other hand are structurally homogeneous, with early-stage fibrils distinctly antiparallel in character, which develop parallel β sheets upon maturation. Furthermore, the antiparallel structure is found to be a persistent feature across different stages of aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.