Due to their role in nutrient transmission, arbuscular mycorrhizal fungi (AMF) are widespread plant root symbionts. They may improve plant production by altering plant community structure and function. Therefore, a study was conducted in the state of Haryana to analyze the distribution pattern, diversity, and association of different AMF species with oil-yielding plants. The results of the study revealed the percentage of root colonization, sporulation, and diversity of fungal species associated with the selected 30 oilyielding plants. The percentage root colonization ranged from 0% to 100%, the highest in Helianthus annuus (100.00 ± 0.00) and Zea mays (100.00 ± 0.00) and the least in Citrus aurantium (11.87 ± 1.43). At the same time, there was no root colonization in the Brassicaceae family. The number of AMF spores present in 50 g of soil samples varied from 17.41 ± 5.28 to 497.2 ± 8.38, with maximum spore population in Glycine max (497.2 ± 8.38) and minimum in Brassica napus (17.41 ± 5.28). Besides, the presence of several species of different genera of AMF was reported in all the studied oil-yielding plants, that is, 60 AMF belonging to six genera viz. Acaulospora, Entrophospora, Glomus, Gigaspora, Sclerocystis, and Scutellospora were observed. Overall, this study will promote AMF usage in oil-yielding plants.
High-temperature stress is leading abiotic stress that restricts plant growth, development and yield globally. It reduces plants' productivity, affecting their morphological, physiological, phenological, biochemical and molecular reactions. Major effects of heat stress include impaired membrane systems, denaturation of proteins, enzyme inactivation etc. Responses of plants towards high-temperature stress vary from species to species, with duration and degree of the stress. Plant scientists' main goal is to develop various techniques/practices for satisfying enhanced crop yields and quality. In the cropping system, legumes grains have a significant role in promising food security to the increasing world population. However, legumes are susceptible to several abiotic stresses and heat stress has been known as a primary constraint in limiting their production. Also, the quantity and quality of seed storage proteins are negatively affected by high-temperature stress. Therefore, new approaches to improve legume heat tolerance are critical for reducing yield losses. Plants have several mechanisms for high-temperature stress such as enzymatic and non-enzymatic antioxidant systems, ion transporter and heat shock proteins activated to cope with stress-induced alterations. This review highlights the current research on various responses of plants to heat stress and plant thermo-tolerance mechanisms at the molecular level and illustrates the role of different exogenous molecules in alleviating the heat-induced damages and transgenic methods used to improve plants' tolerance to high temperatures.
Worldwide, different abiotic stresses, such as drought, salinity, and heavy metals, harm crop productivity. Legumes, compared to cereals, are more susceptible to these stresses. The current work aimed to provide more insights into the effects of Cd and Pb on various seed protein characteristics of two cultivars of chickpea (Cicer arietinum), HC1 and HC5. At the highest concentrations of Cd, the total seed proteins decreased from 25.2% (control) to 7.1% (30 mg/kg soil), while in the case of the maximum concentration of Pb, 300 mg/kg soil, the protein content decreased to 16.1% from 25.2%. The content of each of the four seed protein fractions viz. albumins, globulins, glutelins and prolamins decreased with an increase in the concentration levels of both heavy metals. The dominating protein fraction, globulins, was reduced by 21.7% in HC1 under Cd stress, while it was reduced by 11.9% in Pb-treated genotype HC5. Electrophoretic analysis of four seed protein fractions on SDS-gels showed only quantitative changes in the polypeptide patterns under varying concentrations of Pb with few qualitative alterations under Cd treatment. The contents of the amino acids tryptophan, cysteine and methionine also decreased with increasing concentrations of heavy metals. Compared to Pb, Cd was found to be more detrimental concerning its influence on seed protein quality. Thus, our analysis revealed how heavy metals impact the quality of chickpea seed proteins by decreasing the content of essential amino acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.