Initiation factor 3 (IF3) is one of the three conserved prokaryotic translation initiation factors essential for protein synthesis and cellular survival. Bacterial IF3 is composed of a conserved architecture of globular N-and C-terminal domains (NTD and CTD) joined by a linker region. IF3 is a ribosome antiassociation factor which also modulates selection of start codon and initiator tRNA. All the functions of IF3 have been attributed to its CTD by in vitro studies. However, the in vivo relevance of these findings has not been investigated. By generating complete and partial IF3 (infC) knockouts in Escherichia coli and by complementation analyses using various deletion constructs, we show that while the CTD is essential for E. coli survival, the NTD is not. Polysome profiles reaffirm that CTD alone can bind to the 30S ribosomal subunit and carry out the ribosome antiassociation function. Importantly, in the absence of the NTD, bacterial growth is compromised, indicating a role for the NTD in the fitness of cellular growth. Using reporter assays for in vivo initiation, we show that the NTD plays a crucial role in the fidelity function of IF3 by avoiding (i) initiation from non-AUG codons and (ii) initiation by initiator tRNAs lacking the three highly conserved consecutive GC pairs (in the anticodon stem) known to function in concert with IF3. IMPORTANCE Initiation factor 3 regulates the fidelity of eubacterial translation initiation by ensuring the formation of an initiation complex with an mRNA bearing a canonical start codon and with an initiator tRNA at the ribosomal P site. Additionally, IF3 prevents premature association of the 50S ribosomal subunit with the 30S preinitiation complex. The significance of our work in Escherichia coli is in demonstrating that while the C-terminal domain alone sustains E. coli for its growth, the N-terminal domain adds to the fidelity of initiation of protein synthesis and to the fitness of the bacterial growth.KEYWORDS initiation with AUA, initiation with AUU, 3GC base pairs, initiator tRNA T he process of translation initiation is the most highly regulated step of protein synthesis, where the three initiation factors serve to establish this tight scrutiny. Initiation factor 3 (IF3) is one such factor which acts as an antiassociation factor for the two ribosomal subunits (1). IF3 from Escherichia coli is composed of 180 amino acids (aa) and is encoded by the essential infC gene (2). Structurally, IF3 can be divided into globular N-and C-terminal domains (NTD and CTD) joined by a linker region. The most important functions of IF3 include ribosome antiassociation (1, 3), shifting 30S-bound mRNA from standby to the P site (4), and its fidelity functions (5, 6). The fidelity function of IF3 entails ejection of incorrect (elongator) tRNAs to allow preferential selection of
Initiator tRNAs (i-tRNAs) are characterized by the presence of three consecutive GC base pairs (GC/GC/GC) in their anticodon stems in all domains of life. However, many mycoplasmas possess unconventional i-tRNAs wherein the highly conserved sequence of GC/GC/GC is represented by AU/GC/GC, GC/GC/GU or AU/GC/GU. These mycoplasmas also tend to preferentially utilize non-AUG initiation codons. To investigate if initiation with the unconventional i-tRNAs and non-AUG codons in mycoplasmas correlated with the changes in the other components of the translation machinery, we carried out multiple sequence alignments of genes encoding initiation factors (IF), 16S rRNAs, and the ribosomal proteins such as uS9, uS12 and uS13. In addition, the occurrence of Shine-Dalgarno sequences in mRNAs was analyzed. We observed that in the mycoplasmas harboring AU/GC/GU i-tRNAs, a highly conserved position of R131 in IF3, is represented by P, F or Y and, the conserved C-terminal tail (SKR) of uS9 is represented by the TKR sequence. Using the Escherichia coli model, we show that the change of R131 in IF3 optimizes initiation with the AU/GC/GU i-tRNAs. Also, the SKR to TKR change in uS9 was compatible with the R131P variation in IF3 for initiation with the AU/GC/GU i-tRNA variant. Interestingly, the mycoplasmas harboring AU/GC/GU i-tRNAs are also human pathogens. We propose that these mycoplasmas might have evolved a relaxed translational apparatus to adapt to the environment they encounter in the host.
During protein synthesis, elongation factor G (EFG) participates at the steps of translocation and ribosome recycling. Fusidic acid (FA) is a bacteriostatic antibiotic, which traps EFG on ribosomes, stalling them on mRNAs. How the bacterial susceptibility to FA is determined, and which of the two functions of EFG (translocation or ribosome recycling) is more vulnerable, has remained debatable. The in vivo studies addressing these aspects of FA mediated inhibition of protein synthesis are lacking. Here, we used a system of Escherichia coli strains and their complementation/supplementation with the plasmid borne copies of the inducible versions of EFG and ribosome recycling factor (RRF) genes. Additionally, we investigated FA sensitivity in a strain with increased proportion of stalled ribosomes. We show that the cells with high EFG/RRF (or low RRF/EFG) ratios are more susceptible to FA than those with low EFG/RRF (or high RRF/EFG) ratios. Our in vivo observations are consistent with the recent in vitro reports of dependence of FA susceptibility on EFG/RRF ratios, and the notion that an overriding target of FA is the translocation function of EFG. An applied outcome of our in vivo study is that FA mediated growth inhibition could be facilitated by depletion or inactivation of cellular RRF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.