Human carbonic anhydrases (HCAs) are responsible for the pH control and sensing in our body and constitute key components in the central pH paradigm connected to cancer therapeutics. However, little or no molecular level studies are available on the pH-dependent stability and functional dynamics of the known isozymes of HCA. The main objective of this Article is to report the first bench-marking study on the structure and dynamics of the two most efficient isozymes, HCA II and IX, at neutral pH using classical molecular dynamics (MD) and constant pH MD (CpHMD) simulations combined with umbrella sampling, transition path sampling, and Markov state models. Starting from the known crystal structures of HCA II and the monomeric catalytic domain of HCA IX (labeled as HCA IX-c), we have generated classical MD and CpHMD trajectories (of length 1 μs each). In all cases, the overall stability, RMSD, and secondary structure segments of the two isozymes are found to be quite similar. Functionally important dynamics of these two enzymes have been probed in terms of active site hydration, coordination of the Zn(II) ion to a transient excess water, and the formation of putative proton transfer paths. The most important difference between the two isozymes is observed for the side-chain fluctuations of His-64 that is expected to shuttle an excess proton out of the active site as a part of the rate-determining intramolecular proton transfer reaction. The relative stability of the stable inward and outward conformations of the His-64 side-chain and the underlying free energy surfaces are found to depend strongly on the isozyme. In each case, a lower free energy barrier is detected between predominantly inward conformations from predominantly outward ones when simulated under constant pH conditions. The kinetic rate constants of interconversion between different free energy basins are found to span 10 7 –10 8 s –1 with faster conformational transitions predicted at constant pH condition. The estimated rate constants and free energies are expected to validate if the fluctuation of the His-64 side-chain in HCA IX may have a significance similar to that known in the multistep catalytic cycle of HCA II.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.