ObjectivesThe presence of proinflammatory low-density granulocytes (LDG) has been demonstrated in autoimmune and infectious diseases. Recently, regulatory neutrophilic polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) were identified in systemic lupus erythematosus (SLE). Because LDG and PMN-MDSC share a similar phenotype with contrasting functional effects, we explored these cells in a cohort of patients with SLE.MethodsLDG and normal-density granulocytes (NDG) were isolated from fresh blood of healthy donors (HD) and patients with SLE. Associations between LDG and clinical manifestations were analysed. Multicolor flow cytometry and confocal imaging were performed to immunophenotype the cells. The ability of LDG and NDG to suppress T cell function and induce cytokine production was quantified.ResultsLDG prevalence was elevated in SLE versus HD, associated with the interferon (IFN) 21-gene signature and disease activity. Also, the LDG-to-lymphocyte ratio associated better with SLE disease activity index than neutrophil-to-lymphocyte ratio. SLE LDG exhibited significantly heightened surface expression of various activation markers and also of lectin-like oxidised low-density lipoprotein receptor-1, previously described to be associated with PMN-MDSC. Supernatants from SLE LDG did not restrict HD CD4+ T cell proliferation in an arginase-dependent manner, suggesting LDG are not immunosuppressive. SLE LDG supernatants induced proinflammatory cytokine production (IFN gamma, tumour necrosis factor alpha and lymphotoxin alpha) from CD4+ T cells.ConclusionsBased on our results, SLE LDG display an activated phenotype, exert proinflammatory effects on T cells and do not exhibit MDSC function. These results support the concept that LDG represent a distinct proinflammatory subset in SLE with pathogenic potential, at least in part, through their ability to activate type 1 helper responses.
ObjectiveWe investigated the mechanistic and pharmacological properties of anifrolumab, a fully human, effector-null, anti-type I interferon (IFN) alpha receptor 1 (IFNAR1) monoclonal antibody in development for SLE.MethodsIFNAR1 surface expression and internalisation on human monocytes before and after exposure to anifrolumab were assessed using confocal microscopy and flow cytometry. The effects of anifrolumab on type I IFN pathway activation were assessed using signal transducer and activator of transcription 1 (STAT1) phosphorylation, IFN-stimulated response element–luciferase reporter cell assays and type I IFN gene signature induction. The ability of anifrolumab to inhibit plasmacytoid dendritic cell (pDC) function and plasma cell differentiation was assessed by flow cytometry and ELISA. Effector-null properties of anifrolumab were assessed in antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays with B cells.ResultsAnifrolumab reduced cell surface IFNAR1 by eliciting IFNAR1 internalisation. Anifrolumab blocked type I IFN-dependent STAT1 phosphorylation and IFN-dependent signalling induced by recombinant and pDC-derived type I IFNs and serum of patients with SLE. Anifrolumab suppressed type I IFN production by blocking the type I IFN autoamplification loop and inhibited proinflammatory cytokine induction and the upregulation of costimulatory molecules on stimulated pDCs. Blockade of IFNAR1 suppressed plasma cell differentiation in pDC/B cell co-cultures. Anifrolumab did not exhibit CDC or ADCC activity.ConclusionsAnifrolumab potently inhibits type I IFN-dependent signalling, including the type I IFN autoamplification loop, and is a promising therapeutic for patients with SLE and other diseases that exhibit chronic dysfunctional type I IFN signalling.
There is accumulating evidence to suggest that IgE plays a significant role in autoimmunity. The presence of circulating self-reactive IgE in patients with autoimmune disorders has been long known but, at the same time, largely understudied. However, studies have shown that the increased IgE concentration is not associated with higher prevalence for atopy and allergy in patients with autoimmune diseases, such as systemic lupus erythematosus. IgE-mediated mechanisms are conventionally known to facilitate degranulation of mast cells and basophils and promote TH2 immunity, mechanisms that are not only central to mounting an appropriate defense against parasitic worms, noxious substances, toxins, venoms, and environmental irritants but that also trigger exuberant allergic reactions in patients with allergies. More recently, IgE autoantibodies have been recognized to participate in the self-inflicted damaging immune responses that characterize autoimmunity. Such autoimmune responses include direct damage on tissue-containing autoantigens, activation and migration of basophils to lymph nodes, and, as observed most recently, induction of type 1 interferon responses from plasmacytoid dendritic cells. The importance of IgE as a central pathogenic mechanism in autoimmunity has now been clinically validated by the approval of omalizumab, an anti-IgE mAb, for patients with chronic spontaneous urticaria and for the clinical benefit of patients with bullous pemphigoid. In this review we summarize recent reports describing the prevalence of self-reactive IgE and discuss novel findings that incriminate IgE as central in the pathogenesis of inflammatory autoimmune disorders.
BackgroundTransmigration of circulating dendritic cells (DCs) into the central nervous system (CNS) across the blood–brain barrier (BBB) has not thus far been investigated. An increase in immune cell infiltration across the BBB, uncontrolled activation and antigen presentation are influenced by chemokines. Chemokine ligand 2 (CCL2) is a potent chemoattractant known to be secreted by the BBB but has not been implicated in the recruitment of DCs specifically at the BBB.MethodsExperimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice by injection of MOG35–55 peptide and pertussis toxin intraperitoneally. Animals with increasing degree of EAE score were sacrificed and subjected to near-infrared and fluorescence imaging analysis to detect and localize the accumulation of CD11c+-labeled DCs with respect to CCL2 expression. To further characterize the direct effect of CCL2 in DC trafficking at the BBB, we utilized an in vitro BBB model consisting of human brain microvascular endothelial cells to compare migratory patterns of monocyte-derived dendritic cells, CD4+ and CD8+ T cells. Further, this model was used to image transmigration using fluorescence microcopy and to assess specific molecular signaling pathways involved in transmigration.ResultsNear-infrared imaging of DC transmigration correlated with the severity of inflammation during EAE. Ex vivo histology confirmed the presence of CCL2 in EAE lesions, with DCs emerging from perivascular spaces. DCs exhibited more efficient transmigration than T cells in BBB model studies. These observations correlated with transwell imaging, which indicated a paracellular versus transcellular pattern of migration by DCs and T cells. Moreover, at the molecular level, CCL2 seems to facilitate DC transmigration in an ERK1/2-dependent manner.ConclusionCNS recruitment of DCs correlates with disease severity in EAE via CCL2 chemotaxis and paracellular transmigration across the BBB, which is facilitated by ERK activation. Overall, these comprehensive studies provide a state-of-the-art view of DCs within the CNS, elucidate their path across the BBB, and highlight potential mechanisms involved in CCL2-mediated DC trafficking.
Dextran, the α-1,6-linked glucose polymer widely used in biology and medicine, promises new applications. Linear dextran applied as a blood plasma substitute demonstrates a high rate of biocompatibility. Dextran is present in foods, drugs, and vaccines and in most cases is applied as a biologically inert substance. In this review we analyze dextran’s cellular uptake principles, receptor specificity and, therefore, its ability to interfere with pathogen–lectin interactions: a promising basis for new antimicrobial strategies. Dextran-binding receptors in humans include the DC-SIGN (dendritic cell–specific intercellular adhesion molecule 3-grabbing nonintegrin) family receptors: DC-SIGN (CD209) and L-SIGN (the liver and lymphatic endothelium homologue of DC-SIGN), the mannose receptor (CD206), and langerin. These receptors take part in the uptake of pathogens by dendritic cells and macrophages and may also participate in the modulation of immune responses, mostly shown to be beneficial for pathogens per se rather than host(s). It is logical to predict that owing to receptor-specific interactions, dextran or its derivatives can interfere with these immune responses and improve infection outcome. Recent data support this hypothesis. We consider dextran a promising molecule for the development of lectin–glycan interaction-blocking molecules (such as DC-SIGN inhibitors) that could be applied in the treatment of diseases including tuberculosis, influenza, hepatitis B and C, human immunodeficiency virus infection and AIDS, etc. Dextran derivatives indeed change the pathology of infections dependent on DC-SIGN and mannose receptors. Complete knowledge of specific dextran–lectin interactions may also be important for development of future dextran applications in biological research and medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.