Long noncoding RNAs (lncRNAs) constitute the majority of transcripts in the mammalian genomes, and yet, their functions remain largely unknown. As part of the FANTOM6 project, we systematically knocked down the expression of 285 lncRNAs in human dermal fibroblasts and quantified cellular growth, morphological changes, and transcriptomic responses using Capped Analysis of Gene Expression (CAGE). Antisense oligonucleotides targeting the same lncRNAs exhibited global concordance, and the molecular phenotype, measured by CAGE, recapitulated the observed cellular phenotypes while providing additional insights on the affected genes and pathways. Here, we disseminate the largest-todate lncRNA knockdown data set with molecular phenotyping (over 1000 CAGE deep-sequencing libraries) for further exploration and highlight functional roles for ZNF213-AS1 and lnc-KHDC3L-2.
Histone variants and their chaperones are key regulators of eukaryotic transcription, and are critical for normal development. The histone variant H3.3 has been shown to play important roles in pluripotency and differentiation, and although its genome-wide patterns have been investigated, little is known about the role of its dynamic turnover in transcriptional regulation. To elucidate the role of H3.3 dynamics in embryonic stem cell (ESC) biology, we generated mouse ESC lines carrying a single copy of a doxycycline (Dox)-inducible HA-tagged version of H3.3 and monitored the rate of H3.3 incorporation by ChIP-seq at varying time points following Dox induction, before and after RA-induced differentiation. Comparing H3.3 turnover profiles in ESCs and RA-treated cells, we identified a hyperdynamic H3.3-containing nucleosome at the −1 position in promoters of genes expressed in ESCs. This dynamic nucleosome is restricted and shifted downstream into the +1 position following differentiation. We suggest that histone turnover dynamics provides an additional mechanism involved in expression regulation, and that a hyperdynamic −1 nucleosome marks promoters in ESCs. Our data provide evidence for regional regulation of H3.3 turnover in ESC promoters, and calls for testing, in high resolution, the dynamic behavior of additional histone variants and other structural chromatin proteins.
Long non-coding RNAs (lncRNAs) constitute the majority of transcripts in the mammalian genomes and yet, their functions remain largely unknown. We systematically knockdown 285 lncRNAs expression in human dermal fibroblasts and quantified cellular growth, morphological changes, and transcriptomic responses using Capped Analysis of Gene Expression (CAGE). Antisense oligonucleotides targeting the same lncRNA exhibited global concordance, and the molecular phenotype, measured by CAGE, recapitulated the observed cellular phenotypes while providing additional insights on the affected genes and pathways. Here, we disseminate the largest to-date lncRNA knockdown dataset with molecular phenotyping (over 1,000 CAGE deep-sequencing libraries) for further exploration and highlight functional roles for ZNF213-AS1 and lnc-KHDC3L-2.
J. Neurochem. (2010) 113, 807–818.
Abstract
Hes‐1 and Hes‐5 are downstream effectors of Notch signaling that are known to be involved in different aspects of neural stem cell proliferation and differentiation. Evidence has emerged that Hes‐1 expression can be regulated by alternate signaling pathways independent of canonical Notch/CBF1 interaction. This context‐dependent differential regulation of Hes‐1 expression in neural progenitor gains a lot of importance as it would help in its exponential expansion without the requirement of interaction from neighboring cells during development. Here, we have clearly demonstrated the existence of a population of neural progenitors with Notch/CBF1‐independent Hes‐1 expression in vitro. Further analysis demonstrated the role of FGF2 in activating Hes‐1 expression through the direct binding of ATF2, a JNK downstream target, on Hes‐1 promoter. This raises the possibility for the existence of two distinct populations of neural progenitors – one maintained by Hes‐1 expression exclusively through Notch‐independent mechanism and the other mediating Hes‐1 expression through both canonical Notch and FGF2‐ATF2 pathway. This alternative pathway will insure a constant expression of Hes‐1 even in the absence of canonical Notch intracellular domain‐mediated signaling, thereby maintaining a pool of proliferating neural progenitors required during development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.