BackgroundThe inverse relationship between GLUT4 and RBP4 expression is known to play a role in the pathogenesis of type 2 diabetes. Elevated levels of RBP4 were shown to cause insulin resistance in muscles and liver. Identification of STRA6 as a cell surface receptor for RBP4 provides further link in this axis and hence we analyzed SNPs in these three genes for association with type 2 diabetes in a South Indian population.Methodology/Principal FindingsSelected SNPs in the three genes were analyzed in a total of 2002 individuals belonging to Dravidian ethnicity, South India, by Tetra Primer ARMS PCR or RFLP PCR. Allele frequencies and genotype distribution were calculated in cases and controls and were analyzed for association by Chi-squared test and Logistic regression. Haplotype analysis was carried out for each gene by including all the markers in a single block. We observed a significant association of three SNPs, rs974456, rs736118, and rs4886578 in STRA6 with type 2 diabetes (P = 0.001, OR 0.79[0.69–0.91], P = 0.003, OR 0.81[0.71–0.93], and P = 0.001, OR 0.74[0.62–0.89] respectively). None of the SNPs in RBP4 and GLUT4 showed any association with type 2 diabetes. Haplotype analysis revealed that two common haplotypes H1 (111, P = 0.001, OR 1.23[1.08–1.40]) and H2 (222, P = 0.002 OR 0.73[0.59–0.89]) in STRA6, H6 (2121, P = 0.006, OR 1.69[1.51–2.48]) in RBP4 and H4 (2121, P = 0.01 OR 1.41[1.07–1.85]) in GLUT4 were associated with type 2 diabetes.ConclusionSNPs in STRA6, gene coding the cell surface receptor for RBP4, were significantly associated with type 2 diabetes and further genetic and functional studies are required to understand and ascertain its role in the manifestation of type 2 diabetes.
BackgroundGlucose-dependent insulinotropic polypeptide (GIP) is one of the incretins, which plays a crucial role in the secretion of insulin upon food stimulus and in the regulation of postprandial glucose level. It also exerts an effect on the synthesis and secretion of lipoprotein lipase, from adipocytes, important for lipid metabolism. The aim of our study was to do a case-control association analysis of common variants in GIP in association with type 2 diabetes and related biochemical parameters.MethodA total of 2000 subjects which includes 1000 (584M/416F) cases with type 2 diabetes and 1000 (470M/530F) normoglycemic control subjects belonging to Dravidian ethnicity from South India were recruited to assess the effect of single nucleotide polymorphisms (SNPs) in GIP (rs2291725, rs2291726, rs937301) on type 2 diabetes in a case-control manner. The SNPs were genotyped by using tetra primer amplification refractory mutation system-PCR (ARMS PCR). For statistical analysis, our study population was divided into sub-groups based on gender (male and female). Association analysis was carried out using chi-squared test and the comparison of biochemical parameters among the three genotypes were performed using analysis of covariance (ANCOVA).ResultInitial analysis revealed that, out of the total three SNPs selected for the present study, two SNPs namely rs2291726 and rs937301 were in complete linkage disequilibrium (LD) with each other. Therefore, only two SNPs, rs2291725 and rs2291726, were genotyped for the association studies. No significant difference in the allele frequency and genotype distribution of any of the SNPs in GIP were observed between cases and controls (P > 0.05). Analysis of biochemical parameters among the three genotypes showed a significant association of total cholesterol (P = 0.042) and low density lipoprotein (LDL) with the G allele of the SNP rs2291726 in GIP (P = 0.004), but this was observed only in the case of female subjects. However this association does not remain significant after correction for multiple testing by Bonferroni's inequality method.ConclusionNo statistically significant association was observed between any of the SNPs analysed and type 2 diabetes in our population. But the analysis of biochemical parameters indicates that the G allele in rs2291726 may be a putative risk allele for increased LDL cholesterol and further studies in other population needs to be carried out for ascertaining its role in cholesterol metabolism and subsequent cardiovascular risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.