Transforaminal lumbar interbody fusion augmentation with bilateral posterior fixation increases fusion construct stability and decreases posterior instrumentation stress. The shape or number of interbody implants does not appear to impact the segmental stability when bilateral pedicle screws are used. Increased posterior instrumentation stresses were observed in all loading modes with unilateral pedicle screw/rod fixation, which may theoretically accelerate implant loosening or increase the risk of construct failure.
Partial facetectomy had a minimal effect on range of motion on the Dynesys-implanted segment. However, in the case of total facetectomy the motion increased by almost 40% in flexion and by 200% in axial rotation. The higher stresses applied to the screws in Dynesys in specific loadings may lead to higher risk of screw failure in Dynesys than in a generic rigid fixation construct.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.