This work proposes deep learning neural network-based X-ray image classification. The X-ray baggage scanning machinery plays an essential role in the safeguard of customs, airports, and other systematically very important landmarks and infrastructures. The technology at present of baggage scanning machines is designed on X-ray attenuation. The detection of threatful objects is built on how different objects attenuate the X-ray beams going through them. In this paper, the deep convolutional neural network of YOLO is utilized in classifying baggage images. Real-time performance of the baggage image classification is an essential one for security scanning. There are many computationally intensive operations in the You Only Look Once (YOLO) architecture. The computational intensive operations are implemented in the Field Programmable Gate Array (FPGA) platform to optimize process delays. The critical issues involved in those implementations include data representation, inner products computation and implementation of activation function and resolving these issues will also be a significant task. The FPGA implementation results show that with less resource occupancy, the YOLO implementation provides maximum accuracy of 98.9% in classifying X-ray baggage images and identifying hazardous materials. This result proves that the proposed implementation is best suited for practical system deployments for real-time Baggage scanning.
In recent years, machine learning algorithms related to images have been widely utilized by Convolution Neural Networks (CNN), and it has a high accuracy for recognition of an image. As CNN contains large number of computations, hardware accelerator like Field Programmable Gate Array is employed. Quite 90 % of operations during a CNN involves convolution. The objective of this work is to scale back the computation time to increase the peak, width and the pixel intensity levels in the input image. The execution time of a image processing program is mostly spent on loops. Loop optimization is a process of accelerating speed and reducing the overheads related to loops. It plays a crucial role in improving performance and making effective use of multiprocessing capabilities. Loop unrolling is one of the loop optimization techniques. In our work CNN with four levels of loop unrolling is used. Due to this delay is reduced compared with conventional Xilinix. With the assistance of strides and padding the 40 % of computation time has been reduced and is verified in MATLAB.
With the proliferation of Internet, distribution of electronic documents has become easy. The most preferred distribution format of electronic documents is Portable Document Format (PDF). In this paper, along with the PDF document, lesser known Deja Vu (DjVu), a document image compression standard, and the authors' proposed compression technique are compared based on the performance in electronic display suitability, view-and-download facility and file size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.