Credit scoring focuses on the development of empirical models to support the financial decision-making processes of financial institutions and credit industries. It makes use of applicants' historical data and statistical or machine learning techniques to assess the risk associated with an applicant. However, the historical data may consist of redundant and noisy features that affect the performance of credit scoring models. The main focus of this paper is to develop a hybrid model, combining feature selection and a multilayer ensemble classifier framework, to improve the predictive performance of credit scoring. The proposed hybrid credit scoring model is modeled in three phases. The initial phase constitutes preprocessing and assigns ranks and weights to classifiers. In the next phase, the ensemble feature selection approach is applied to the preprocessed dataset. Finally, in the last phase, the dataset with the selected features is used in a multilayer ensemble classifier framework. In addition, a classifier placement algorithm based on the Choquet integral value is designed, as the classifier placement affects the predictive performance of the ensemble framework. The proposed hybrid credit scoring model is validated on real-world credit scoring datasets, namely, Australian, Japanese, German-categorical, and German-numerical datasets.
Credit score classification is a prominent research problem in the banking or financial industry, and its predictive performance is responsible for the profitability of financial industry. This paper addresses how Spiking Extreme Learning Machine (SELM) can be effectively used for credit score classification. A novel spike‐generating function is proposed in Leaky Nonlinear Integrate and Fire Model (LNIF). Its interspike period is computed and utilized in the extreme learning machine (ELM) for credit score classification. The proposed model is named as SELM and is validated on five real‐world credit scoring datasets namely: Australian, German‐categorical, German‐numerical, Japanese, and Bankruptcy. Further, results obtained by SELM are compared with back propagation, probabilistic neural network, ELM, voting‐based Q‐generalized extreme learning machine, Radial basis neural network and ELM with some existing spiking neuron models in terms of classification accuracy, Area under curve (AUC), H‐measure and computational time. From the experimental results, it has been noticed that improvement in accuracy and execution time for the proposed SELM is highly statistically important for all aforementioned credit scoring datasets. Thus, integrating a biological spiking function with ELM makes it more efficient for categorization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.