Background Early clinical cracked tooth can be a perplexing disorder to diagnose and manage. One of the key problems for the diagnosis of the cracked tooth is the detection of the location of the surface crack. Methods This paper proposes an image-based method for the detection of the micro-crack in the simulated cracked tooth. A homemade three-axis motion platform mounted with a telecentric lens was built as an image acquisition system to observe the surface of the simulated cracked tooth, which was under compression with a magnitude of the masticatory force. By using digital image correlation (DIC), the deformation map for the crown surface of the cracked tooth was calculated. Through image analysis, the micro-crack was quantitatively visualized and characterized. Results The skeleton of the crack path was successfully extracted from the image of the principal strain field, which was further verified by the image from micro-CT. Based on crack kinematics, the crack opening displacement was quantitatively calculated to be 2–10 µm under the normal mastication stress, which was in good agreement with the value reported in the literature. Conclusions The crack on the surface of the simulated cracked tooth could be detected based on the proposed DIC-based method. The proposed method may provide a new solution for the rapid clinical diagnosis of cracked teeth and the calculated crack information would be helpful for the subsequent clinical treatment of cracked teeth.
Carbon nanotube-based conductive polymer composites (CPC) showed great potentials for self-sensing and in situ structural health monitoring systems. Prediction of the long-term performance for such materials would be a meaningful topic for engineering design. In this work, the changing behavior of the long-term resistance of a multi-walled carbon nanotubes/epoxy resin composite gasket was studied under different temperature and loading conditions. Glass transition strongly influenced the resistance behavior of the composite during the thermal creep process. Similar to classical Kelvin–Voigt creep model, a model considering both the destruction and recovery processes of the conductive network inside the CPC was established. The long-term resistance variation can be predicted based on the model, and the results provided here may serve as a useful guide for further design of smart engineering structural health monitoring systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.